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3.3 Overview of Machine Learning Potentials
Workflow of machine learning potentials

Fitting the PES with machine learning
potentials:

e The local environment of an atom
within the cutoff sphere (green) is
encoded in a set of local structural
parameters.

e These which are mapped onto the
energy assigned to atom using a
regression model.

e The summation of the energies of
other atoms of the system gives the
total energy and thus a point on the
PES of the system.
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3.3 Overview of Machine Learning Potentials
Workflow of machine learning potentials

Fitting the PES with machine learning
i a () Ref NI _ =
potentials: © ccbosesy HY=EVY Regression [ 5@
e The local environment of an atom Hiegles shdifamas i
3

(data labels)

s : & .
within the cutoff sphere (green) is = A b B 8
encoded in a set of local structural S; * =
-

parameters. — .

e These which are mapped onto the Structural models T T cinensiona) Representation q (descriptors)
(data locations) l of atomic structure *
energy assigned to atom using a b
. A A A

regression model. r D ¢ Y N
e The summation of the energies of A4 a H*‘I’ ; g ,\/

other atoms of the system gives the - b S

total energy and thus a pointonthe  IEGEE ER Sl [Mmit T Do | mear D

PES of the system. J.D. Morrow et al., J. Chem. Phys. 158, 121501 (2023).

I N N
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3.3 Overview of Machine Learning Potentials
Types of machine learning potentials

Linear regression potentials Kernel regression potentials Neural network potentials
e Polynomial fit of PES e Non-linear relation betweena e Universal approximation
pair of random variables based on nonlinear mapping
2 Simple mathematical form 2 Less data needed < Accuracy
¥ Efficient to evaluate ) Uncertainty estimates ) Transferability

=) Require descriptors =) Scales unfavorably (cubic) =) Challenges in training and
hyperparameter optimization

SNAP, MTP, ACE GAP, FLARE Behler-Parrinello, DeepMD,
SchNet, NequlP, MACE, Allegro
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3.3 Overview of Machine Learning Potentials
Accuracy of machine learning potentials

e Learning curves of atomization energies of 0.4 &L e
organic molecules, showing out-of-sample ;- -somond
prediction error (mean absolute error) decays G
with increasing number of training molecules 0.151 | :
drawn at random from QM9 dataset. -3y

_ F-Sny

e Dataset including 134,000 stable small organic s 0087 _—

molecules made up of C, H, O, N, and F. g IW
. _ _ 0.025 -

e Subset of the 166 billion organic molecules in the
GDB-17 database of compounds relevant for
drug design and lead compounds.

0.005 - ; i .
100 1k 10k 100 k

O. A. von Lilienfeld et al., Nature Communications 11, 4895 (2020)
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3.3

Overview of Machine Learning Potentials

Accuracy of machine learning potentials

59 06.01.2025

Benchmarking potentials for wide range of properties including
defects, rare event forces, diffusion, phonon, thermal
conduction, and elastic modulus.

Similarities of the error metrics allow the analysis of the joint
performances

Models that are clustered exhibit similar errors on the same
properties

The scattering of DeepMD models in the similarity clustering
based on the defect formation energy category suggests that
they can only have good predictions in some properties in the
defect formation energy but perform poorly in others.

Atomistic Simulation Methods Attila Cangi | a.cangi@hzdr.de
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U Similarity > 1.3

DeepPot-SE

GAP

SNAP, NNP, DeePMD,
and DeepPot-SE

Clusters of REs

Y. Liu et al, npj Computational Materials 10, 159 (2024).
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3.3 Overview of Machine Learning Potentials
Computational performance of machine learning potentials

e Error vs. computational cost for Mo system.

e Dashed line corresponds to the Pareto frontier
which is indicates an optimal trade-off between
accuracy and computational cost.

I N N
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Y. Zuo et al, J. Phys. Chem. A 124, 731 (2020).
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3.3 Overview of Machine Learning Potentials
Computational performance of machine learning potentials

e Computational cost for a time-step vs. the 10°
number of molecules for liquid water simulations. 10°

e First-principles methods have a cubic scaling
with the number of atoms.

e Interatomic potentials (both classical and
machine learning) scale linearly.

TIP3P —&—

CPU core time per step [s]
o
o

g | DFT: PBE+TS —&—
10- | 2 2 2 2 asss 2 2 2 2a22an 2 2 a2 aaasal 2 2 2 2asaal 2 2 2 2asas
10’ 10° 10° 10* 10° 10°

Number of molecules
L. Zhang et al., Phys. Rev. Lett. 120, 143001 2018).

61 06012025  Atomistic Simulation Methods Attila Cangi | a.cangi@hzdr.de . | ‘ \’ CASVUS
- SYSTEMS UNDERSTANDING

Machine Learning Interatomic Potentials



3.4 Data and Descriptors
Methods for generating data

First-principles molecular dynamics (DFT)
e Structures are generated by simulating atomic
motion at a specific temperature and pressure.
e Configurations are saved at regular intervals.

Force field trajectories
e Pre-existing conventional force fields are used to
generate initial configurations.
e Potential bias from force field assumptions needs
to be considered.

Random atomic configurations
e Atoms or molecules are randomly placed within
constraints (e.g., minimum atomic distances).
e This ensures chemically reasonable initial
configurations.
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3.4 Data and Descriptors
Methods for generating data

Random displacements
e Atomic displacements are applied to known crystal
structures to explore local energy minima.

\ | — Pyrrole

Normal mode sampling S R | SRR G
e Commonly used for molecular systems. s T
e Structures are generated by sampling vibrational N AR end]
4 Raman shift (cm™)

normal modes. i .
Metadynamics e Sl
e Enhances the sampling of rare events and g ool
transition states by biasing the system's energy Ramaf;:‘;?&cm-u o %o g
landsca pe. J. Lee et al., Nature 568, 78 (2019).
I N N
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3.4 Data and Descriptors
Methods for generating data

Fragment-based sampling
e Larger systems are decomposed into smaller
fragments for more focused sampling.

Database and repository usage
e Public or proprietary databases provide access to
pre-computed atomic configurations.
e Care must be taken to ensure compatibility with
training requirements (e.g., consistent settings
and input formats).
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3.4 Data and Descriptors
Generating data

Methods for generating data
e The quality of the dataset determines the accuracy and
transferability.
e The dataset's reliability depends on the chosen electronic
structure method, often DFT.
e Higher-level methods like coupled cluster can provide more
accurate results but are computationally expensive.

Composition of the training database
e Typically contains 1,000 to 10,000 snapshots.
e Includes energies, forces, and often stresses, derived from
first-principles molecular dynamics (usually DFT).
e Can involve snapshots from first-principles molecular
dynamics.

J. Behler, Chem. Rev. 121, 10037 (2021).
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3.4 Data and Descriptors
Generating data

Diversity in Data
e The database should be diverse and representative of
configurations relevant to the intended application.

Structure Selection

e Low-energy configurations are prioritized, but non-equilibrium
structures (e.g., defects, transition states) are included to
ensure coverage of the configuration space.

e For metals, defects like dislocations, grain boundaries, and
stacking faults are often emphasized.

e For covalent materials, diverse phases, including liquids and
amorphous forms, as well as specific defects, are included.
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3.4 Data and Descriptors
Generating data

Role of Human Expertise
e Human input is often crucial for selecting and curating
reference structures.
e Expert knowledge ensures relevance to targeted applications
but may introduce redundancies or biases.

Challenges and Strategies
e Striking a balance between database completeness and
computational manageability.
e Over-reliance on hand-picking can lead to inefficiencies,
prompting the adoption of more automated approaches like
active learning.

Active learning strategies are an active area of research
I e I e ——
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3.4 Data and Descriptors

Descriptors

Local Structural Descriptors E— E

e Encodes the local environment of an atom into a fixed-length — E )
feature vector. i

e Ensures rotational, translational, and permutational invariance,
critical for accurate ML models.

e Provides smooth representations of atomic environments to
enable effective regression.

Key Requirements

e Efficiency: Must distinguish between different environments
while being computationally manageable.

e Completeness: Should theoretically reconstruct the atomic
environment accurately, avoiding loss of structural information.

e Fixed Size: Converts variable-sized position vectors into a
fixed-length feature vector, allowing standardized processing
in ML frameworks.
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3.4 Data and Descriptors
Comprehensive list of descriptors

Atom-Centered Symmetry Functions (ACSFs)

Smooth Overlap of Atomic Positions (SOAP)
e Provides rotational, translational, and permutational invariances.

Coulomb Matrix

e Captures atomic arrangements based on charges and distances.

Bispectrum
e Encodes rotational invariance through spherical harmonics.

Bag of Bonds
e Represents molecules as sets of interatomic bond properties.

Ewald Sum Matrix
e Includes long-range electrostatics for molecular representations.

Overlap Matrix-Based Descriptors
e Derived from quantum chemistry overlap integrals.

Faber-Christensen-Huang-Lilienfeld (FCHL) Descriptors
e  Built for systematic scalability and transferability.

Many-Body Tensor Representation (MBTR)
e Encodes high-order structural correlations.
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Spherical Harmonics-Based Descriptors
e Extend bispectrum-like methods.

Weighted Symmetry Functions
e Enhance ACSFs by emphasizing specific local features.

Polynomials in Moment Tensor Potentials (MTPs)
e Efficiently encode structural configurations.

Histogram of Internal Coordinates
e Simplifies representation by binning distances and angles.

Chebyshev Polynomials
e Provide compact representations for certain systems.

Long-Distance Equivariant Representations
e Account for extended interactions while maintaining symmetry properties.

Smoothed Atomic Densities
e  Capture continuous atomic density distributions.

Permutation Invariant Polynomials
e  Ensure symmetry in small molecular systems.
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3.4 Data and Descriptors
Descriptors

Common types of descriptors

e Gaussian symmetry functions (Behler-Parrinello type)
Represent pairwise and angular dependencies.

e Moment tensor descriptors
Provide higher-order interactions using tensor contractions.

e SOAP (Smooth Overlap of Atomic Positions)
Uses density expansions for environment representation but is
computationally intensive.

e Zernike polynomials
Compact and orthogonal representation of environments.

e Atomic Cluster Expansion (ACE)
Generates invariant polynomials for multicomponent systems.

Trade-offs in descriptor design
e Balancing completeness and computational cost.
e Overcomplete descriptors may lead to redundancy and discontinuities.

= — X cAsus
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3.5 Examples of Machine Learning Potentials

Linear regression potential
e Atomic cluster expansion

Regression kernel potential
e (Gaussian approximation potential

Neural network potential
e Behler-Parrinello neural network potential

Deep neural network and advanced potentials
e MACE potential
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3.5.1 Example 1: Atomic cluster expansion

Many-atom expansion E;, =Vo(Z;) + Z Vi(rij,, 24,5 Z;)
e Known expression for expanding the total energy into J1
contributions from sites energies. + Z Va(Tijes Zj, s Tijes Zis Zi) + ...
e Even if one term can be evaluated fast (linearly), the 1< j=
combinatorial scaling of the multi-index sums makes this
) i 9 + Z VN(Tij17Zj17' -arijN7ZjN;Zi)
impractical for large systems. i< <in
Atomic cluster expansion
e Reorder many-atom expansion and consider repeated and Ei = Uo(Z:i) + Z Ur(rijss Zjrs Zi)
spurious (self-interaction) clusters. J1
+ Y Us(rijy, ZjysTigar Zjas Zi) + - .
j13j2
+ Z UN(T’I:j17 Zj17 <o 7rijN7ZjN; Zz)
J1s-JN

D
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3.5.1 Example 1: Atomic cluster expansion

Many-atom expansion (a)
e Known expression for expanding the total energy into
contributions from sites energies.
e Even if one term can be evaluated fast (linearly), the
combinatorial scaling of the multi-index sums makes this
impractical for large systems.

Atomic cluster expansion
e Reorder many-atom expansion and consider repeated and

spurious (self-interaction) clusters.

E

R. Drautz, Phys. Rev. B 99, 014104 (2019).
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3.5.1 Example 1: Atomic cluster expansion

Simple four-stage evaluation scheme
e The evaluation cost scales only linearly in the number of
neighbours, unlike the combinatorial scaling of a naive cluster

expansion.
E;=6-BWY
1.0 4
B = ¢ A® yY/ *\
]\_]' 0.6
(?)  _ I I (2) )
Anlm T Antltmt o
t=1 0.2 ; )
(¢) E : ™M (- 7 ,
Anlm Rnl (Ir’l;] 9 Z] 9 Z’L) }/2 (T’L]) 0.00.0 0.4 0.6 0.8 1.0
. r/re
‘7 R. Drautz, Phys. Rev. B 99, 014104 (2019).
I N N
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3.5.1 Example 1: Atomic cluster expansion

e Forces are obtained by differentiation (p)
o Involves gradients of functions of the atomic density = —Vilk =—Vy Z F(p
expanded in an atomic cluster expansion )

r oB%
S DD DD DL SR
e Training and loss function inim p Kl Op; inlm

o Obtain an error that approximately scales with the
energy of the reference data.

L= anE — EreN? 4 oy Z|C |-|—a ZlC(K)

Knl Knl
2
wn = w/ [ Bl — Epef, (1+ 4))
- .  —

D
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3.5.1 Example 1: Atomic cluster expansion

Machine learning potential for copper

e The error in total energy converges quickly with the order of the expansion
45 : Kmax =1
04! Komax = 2
| -o- Kmax =3
35 !
|
— 30 -
2 |
E»n
1
< 20714
= ;59
[
10 - ‘\.\'._“‘
54 & R R g
0 g WQOO.OM“n“---4..‘.‘00.;.“‘~
1 1 1 1 '_".'?—|_‘M
1 2 3 4 5 6 7
T'min (A) R. Drautz, Phys. Rev. B 99, 014104 (2019).
I . - I
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3.5.2 Example 2: Gaussian approximation potential (GAP)

Application

Atomic descriptors ( £ )

h A A ¢

environment j

........

Kernels (similarity functions
for pairs of environments)

Gaussian Process Regression

2"\ True function
/ \ (unknown)
/

— GPR ML model
Uncertainty

Atomic properties

(8s0(8) | [ a(®) |

Potentials (force fields)

Scalar Tensorial
properties properties

[ e®) ) Fee) )

Atomic Forces
energies (derivatives)
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3.5.2 Example 2: Gaussian approximation potential (GAP)

Introduction to Gaussian process regression (GPR)

e GPRis nonlinear, nonparametric regression for interpolating between data points scattered in a
high-dimensional input space.

Nonparametric regression does not assume a closed functional form.

Instead, we fit a flexible function based on a large amount of data.

Once fit function has been “trained” we can evaluate it to make predictions.

Consider a smooth, regular function, y, which takes a d-dimensional vector as input and maps it onto a

single scalar value: d
y : R* =R

e \We do not know the functional form of y, but we have made N independent observations, y n, of its
value at the locations x_n, resulting in a dataset:

N

e The goal is now to use these data values to create an estimator that can predict the continuous function
y at arbitrary locations x and also to quantify the uncertainty (“expected error”) of this prediction.
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3.5.2 Example 2: Gaussian approximation potential (GAP)

Introduction to Gaussian process regression (GPR)

e We find an approximation defined as a linear combination
of M basis functions with corresponding coefficients.

e The basis functions are placed at arbitrary locations in the
input space.

e Properties of the function k:

o describes the similarity when evaluated at two
arbitrary locations.

o is symmetric to swapping its arguments.
o is positive semidefinite.
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@ Observations

(X5 Yn)

at specific
locations (e)

9 Basis function
k(x,xm) = exp (

€) Estimation (fit)

m=1

- >
a, s
\4
s |2) Y N
20iengin Ororath

\4
M
7(x) = Y cmk(x,xm) /\v

< True function (y)
\ ¢ (unknown)

V. L. Deringer et al., Chem. Rev. 121, 10073 (2021).
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3.5.2 Example 2: Gaussian approximation potential (GAP)

Introduction to Gaussian process regression (GPR)

e The kernel function does not matter in principle.

e However practical success or failure of a GPR model will
depend to a large extent on choosing the appropriate
kernel.

a Learning from function values

Too small ojgngty (OVerfitting) Appropriate ojgngth

oot r non
L) \ v
Il\l' H H \ i i\
;A S 7k U
] { EyY 3 v' |‘
LY . /(O . L

e Consider a Gaussian kernel which includes a length scale o
hyperparameter. Clengt

e This kernel is a universal approximator for any setting of v/ W /\\.«/

the length scale, but choosing an inappropriate length
scale will result in very slow convergence as a function of
the number of training data points.

V. L. Deringer et al., Chem. Rev. 121, 10073 (2021).
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3.5.2 Example 2: Gaussian approximation potential (GAP)

Introduction to Gaussian process regression (GPR)

e Fitting a GPR model means finding the coefficients that minimize the loss function

~

ol

N
n=1 o
e \With a regularization term

M
R = Z Cm, k(mm,wm/)cm/

m,m/’

e Two objectives are included in the loss function.
o The first term achieves a close fit to the data points, but would alone lead to overfitting.
o The regularization forces the coefficients to remain small.
o The collection of hyperparameters adjusts the balance between accurately reproducing the fitting
data points and the overall smoothness of the estimator.
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3.5.2 Example 2: Gaussian approximation potential (GAP)

Introduction to Gaussian process regression (GPR)

a Full GPR fitting S b Sparse GPR fitting S

(xi’l; yn) (xn; yn)
N data locations | l N data locations, M representative locations | l
N - N ' M N - N N
i 4 ' i b »
B
— - —
N = N N
- 1 1
C = I: Kyy  + z y c = [KMM +  Kuyn X 2 y
Full GPR prediction Sparse GPR prediction
+ ' I Reference data (y)
= b L k(x,x1) : 8= k(x x1)| T M < N entries B Kernel values (k)
g c' k(x,x2) N entries g k(X) (independent of B Coefficient
k(X) = ) (scaling with k(x xm)d L database size) oefficients (c)
: database L -
size) N Prediction (x — 1)
k(x,xN)
V. L. Deringer et al., Chem. Rev. 121, 10073 (2021).
I e I e
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3.5.2 Example 2: Gaussian approximation potential (GAP)

e GAP learns the PES as a function of the atomic positions from

precomputed reference data (usually from DFT). E = 2 E § E Ez)
e GAP performs a non-parametric kernel regression of the PES
for estimating a local energy of an atomic environment. E Oln Ez gn)
Y

e GAP rewrites the PES (a nonlinear function of the atomic
positions) as a linear function in the kernels.

e This enables the use linear algebra to obtain the fitting
coefficients during the training stage.
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3.5.2 Example 2: Gaussian approximation potential (GAP)

Overview of constructing a GAP potential

E = ZE ZE (&)

A Energies, forces, Z ank ’S“ 5"
HWY = EW and virial stresses
I Gaussian Prqcess
Regression fit
¢ 05
) "
.Q“‘s I" “"' "l“‘- ,"- .‘ -':' l‘l: l': .\,""
P | o o M
~ Y ® ~
S ""' “Exact”, but Q)
unknown PES :
I
2 2 o 1
@ Construction of a {l‘i} (3N dimensional) {El} (descriptors) i
“." reference database 7 !
|
A o g Representation of |
Iterative improvement atomic environments :
I

|

1

' (e.g., GAP-RSS)

1 V. L. Deringer et al., Chem. Rev. 121, 10073 (2021).

_______________________________________________________________________________________
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3.5.2 Example 2: Gaussian approximation potential (GAP)
Application: Amorphous carbon films

b Low-energy growth C High-energy growth
(direct attachment) A (peening) A
l’~_:l\ : ‘\_‘I‘ :
2 S
'S O spt? S Incident spt? 5
5 creation |£ ion g} o~ creation £
@) ‘E.E .<;it,:: ] g
o s & o
Knock-on / ic sp
atoms d?gé?gr:,;n\.cregtion
d 2 eV impact e 20 eV impact

e )
<05 (99" 419
V. L. Deringer et al., Chem. Rev. 121, 10073 (2021).
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3.5.2 Example 3: Behler-Parrinello Neural Network Potentials (BP)

e Assuming locality, write the PES as a sum of individual atomic energy contributions

Natoms Nelements Natoms

e Coordinates of the atoms are transformed to vectors of atom-centered
symmetry functions (ACSF).

e They describe the local atomic environments up to the cutoff radius.

e For each atom, the respective ACSF vector is then used as input for an
atomic neural network (NN) predicting its atomic energy.

e Finally, the atomic energies are summed to obtain the total PES.

J. Behler, Chem. Rev. 121, 10037 (2021).
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3.5.2 Example 3: Behler-Parrinello Neural Network Potentials (BP)

Example for a lithium hydroxide ion pair in water

Input Hidden Hidden Output 1 ?
Layer Layer 1 Layer 2 Layer

]
]

~
=

~

z]

)
T W NI =TI

~

YYVYYY

|
YYY

Etot

\4

A. M. Tokita et al., J. Chem. Phys. 159, 121501 (2023).

Machine Learning Interatomic Potentials
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3.5.2 Example 3: Behler-Parrinello Neural Network Potentials (BP)

Minimal example

Input Hidden Hidden Output
e The numerical value a given node in a given layer is Layer Layer 1 Layer 2 Layer
Nk | 12
[ _ pl [ § : kl k v
y] fj bg _l_ a’zg yz I/;H\\// aZ3
p ' 11
\V @A\ /N

\ .
e The output this small feed-forward neural network is 4‘%& I’I/
W VR
0D~ D

4 3 i
2 12 p1 | 31 01
J=1 i=1

Bias

A. M. Tokita et al., J. Chem. Phys. 159, 121501 (2023).

4
B f <6?+Zai?i-f§
k=1

D
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3.5.2 Example 3: Behler-Parrinello Neural Network Potentials (BP)

Atom-centered symmetry functions

Each atom is represented by a set of cutoff functions, radial symmetry functions, and angular
symmetry functions.

Requirements of suitable atom-centered symmetry functions
e They need to describe the structural details of the atomic environments.
e They must be invariant under rotation, translation, and permutation.
e They must decay smoothly to zero in value and slope at the cutoff radius.
e They need to be continuous and differentiable.
e Their number in the neural network input vectors must be independent of the number of neighbors inside

the cutoff sphere.
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3.5.2 Example 3: Behler-Parrinello Neural Network Potentials (BP)

Atom-centered symmetry functions

Each atom is represented by a set of: Natoms€Re Natoms€Re
G = 21—¢ Z Z [(1+ X cosB;,)°
angular symmetry 7 i
functions o (R% 4 R?
e~ MR +E; St R3) fo(R; )fc(Ril)fc(Rjk)}
a) 1.0 ( =2 c =4 C =16
cutoff functions z:
0.5 [cos ( ) + 1] for R;; <R, °*
fc(Rz'j) = Re 0.2
0 for Rij > R, 66
0 SR,-]-[ao] 10 270°
b) 1o
. . 0.8
radial symmetry functions 5 -
NatomseRc 0 36?0.4 ‘i
Giad — Z e—’f](Rij—RS) fc(sz) s
j 0.0 ) 5 10 A. M. Tokita et al., J. Chem. Phys. 159, 121501 (2023).
Rji [ao]
I e - I |
omistic Simulation Methods ila Cangi | a.cangi@hzdr.de - CF\SUS
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3.5.2 Example 3: Behler-Parrinello Neural Network Potentials (BP)

Training and optimization —

e \Weights are updated once per energy and per force l .
component.
_g’ :-»[ Calculate E Error ]
e At the end of each epoch, the RMSEs of the entire training and o| | 84-(_calcuiate Gradient )
also test sets are computed. g[8 ( - )
1 Nstruct 5 3 % v
ERMSE = N (Ez - E'i,,BP) °:_ g gw g‘.—»[ Calculate F Error ]
\ struct i—=1 8 2 |.=|.§ g ‘
=l o < c =]
= 52|19 '-{Calculate Gradient]
!
1 Natruct § [ Force Update ]
2
Fryvse = \ N > (F;— Fipp) :
struct i—=1
. ) . Calculation of the Energy
e Typical datasets contain about 10 000 structures (with roughly and Foree RISEs ofall Pata

100 atoms each), i.e., 10 000 total energies and about 1 000 cr———
000 force vectors for each atom. A. M. Tokita et al., Jr.acl::eem. :h:l?sg, 121501 (2023).
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3.5.2 Example 3: Behler-Parrinello Neural Network Potentials (BP)
Underfitting and overfitting

a) A == Training
i == Test —~
- (9]
b= B ® Training point === HDNNP
= = ® Test point == Target
5 g s
bt 5, Underfitting
) ~
s e
= 2
w » w
Epoch Configuration
b) o A
)
5 o)
g 5
g g
7 5
= >
x o
| .
s 2
> L
Epoch Configuration
c) o A
= m
= =4
jus C
- 3
£
© 2
0 &,
g & Overfitting
< 0]
w &
>
Epoch Configuration
A. M. Tokita et al., J. Chem. Phys. 159, 121501 (2023).
o — . cnsus
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3.5.2 Example 3: Behler-Parrinello Neural Network Potentials (BP)

Active learning

)
a) |%, % e ¥, % || Inital dataset b) ~= Tharaken 1
(o) ) o o 44
000.0 go.c..o go .Oo.g g
o ¢o° o g
o o g o.o o
“
Train two or more HDNNPs 8
>
()}
j .
Q
[
w
) Iteration 2
HDNNP 1 HDNNP 2 5
Extended dataset e
v -
S
>
structures 5
] .
3"2. o o 08" & .O°°c $%°e with ,-\
- 8 90°% %0 HDNNP2 % Iteration 3
s
(o=f
.cho.oo oC (‘c.oo 3.
o.o ° 00. & e & ® 0
& % ‘o 5% =
00. ° 00 o8 og °® 0@ ~
A >
()}
HY=EY Check prediction deviation §
goo go .D go .00 OO.DO %0 .C UJ
8 5 P . .° o.o o.o 2 -
e 0 o® -
Additional reference < 00%0 8° ®° 20" %o -
calculation Select structures T R @ Iteration N
with large deviation i 2 rom| [ o o% el =
ooo. o.°o 000’ 3 Dg S
-® ce oe® | [o® o0 o .D
©
5
Convergence
<« 2 > —FDNNP 1
(7] = HDNNP 2
. { v -
Final data set 0 Target

Configuration
A. M. Tokita et al., J. Chem. Phys. 159, 121501 (2023).
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3.5.2 Example 3: Behler-Parrinello Neural Network Potentials (BP)
Simple application: Lithium hydroxide

a) =
400 - Cycle 06 5+
= Cycle 05 g 2 =
350+ =1 Cycle 05 i 8
=1 Cycle 03 B T TN
300‘ = CYC'G 02 -1.05 -1.00 -095 -090 -085 -0.80 -075 —0.70
5554 =1 Cycle 01 e
o [ AIMD
200 1 -0.80
150‘ E-o.as
100- :%-0.90
50_ -0.95
~157.45 —157.40 —157.35 —157.30 —157.25 —157.20
ERef [ev atoms_ 1 ] -1.05 —1.00 —0.95 [—:_::[(;V al;r(:]i? —-0.80 -0.75 —-0.70
A. M. Tokita et al., J. Chem. Phys. 159, 121501 (2023).
N N - I .
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3.5.3 Example 4: Deep Learning Potentials

Convolutional graph neural networks (message passing neural networks)

Introductory material and interactive Layer 0 Layer 1 Layer 2 Layer 3
graphics

e “A Gentle Introduction to Graph Neural

Networks”
(doi.org/10.23915/distill.00033)

e “Understanding Convolutions on
Graphs”
(doi.org/10.23915/distill.00032)

A Gentle Introduction to Graph Neural Networks, doi.org/10.23915/distill.00033.

o — Lo CASUS
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3.5.3 Example 4: Deep Learning Potentials

Convolutional graph neural networks (message passing neural networks)

V Vertex (or node) attributes

E Edge (or link) attributes and directions

U Global (or master node) attributes

A Gentle Introduction to Graph Neural Networks, doi.org/10.23915/distill.00033.
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3.5.3 Example 4: Deep Learning Potentials

Convolutional graph neural networks (message passing neural networks)

0 = Vertex (or node) embedding
(/ : --—.-.

\ : Edge (or link) attributes and embedding

U

ERRNI

Global (or master node) embedding

i

A Gentle Introduction to Graph Neural Networks, doi.org/10.23915/distill.00033.
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3.5.3 Example 4: Deep Learning Potentials

Convolutional graph neural networks (message passing neural networks)

Images can represented as graphs

Image Pixels Adjacency Matrix

A Gentle Introduction to Graph Neural Networks, doi.org/10.23915/distill.00033.

98 06.01.2025 Atomistic Simulation Methods Attila Cangi | a.cangi@hzdr.de -H. _‘ D R @ SN'QED}N{E?
R Y SYSTEMS UNDERSTANDING

Machine Learning Interatomic Potentials



3.5.3 Example 4: Deep Learning Potentials

Convolutional graph neural networks (message passing neural networks)

More importantly, also molecules can represented as graphs.

Caffeine molecule Adjacency matrix Graph representation

O v
o ~ AN O < 1O © N~ 00 O T v

N ™
- -

© @ NOO ()] AOWON - O

—_
o

-t
=

-l
N

=
w

A Gentle Introduction to Graph Neural Networks, doi.org/10.23915/distill.00033.
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3.5.3 Example 4: Deep Learning Potentials

Convolutional graph neural networks (message passing neural networks)

SO <7
— l\ , O
_—

> RIS
e T

< SZELN
o - O

X
3

N ol Ww| o —

Understanding Convolutions on Graphs, doi.org/10.23915/distill.00032.

~=DR Ccnsys
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3.5.3 Example 4: Deep Learning Potentials

Convolutional graph neural networks (message passing neural networks)

Challenges with graphs: Lack of consistency

e Graphs are very flexible mathematical models,
but lack consistent structure across instances.

(toxic vs. non-toxic molecules) OH

OH
e Molecules may have different numbers of

atoms.

O © OH
HO o 0.0 , HO on
e Atoms may be of different types. Hojgj)k NQ OH NH,
OH OH o
OH

O
. e
e Each atom may have different numbers of i
connections.
. CO n n ecti o n S Ca n h ave d iﬁe re nt Stre n gths Left: A non-toxic 1,2,6-trigalloyl-glucose molecule. Right: A toxic caramboxin molecule.

Understanding Convolutions on Graphs, doi.org/10.23915/distill.00032.

(chemical bonds).
I e I
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3.5.3 Example 4: Deep Learning Potentials

Convolutional graph neural networks (message passing neural networks)

Challenges with graphs: Node-order
equivariance

e Graphs often have no inherent ordering.
(molecules)

e But representing graphs as vectors requires
us to use a fixed order. (See example on the
left.)

e Want algorithms to be node-order
equivariant!

Understanding Convolutions on Graphs, doi.org/10.23915/distill.00032.

= — X cAsus
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3.5.3 Example 4: Deep Learning Potentials

Convolutional graph neural networks (message passing neural networks)

Common problems for graphs

e Node Classification: Classifying individual nodes.

Toxic

e Graph Classification: Classifying entire graphs.

e Node Clustering: Grouping together similar nodes
based on connectivity.

Node Classification Graph Classification Node Clustering

e Link Prediction: Predicting missing links.

e Influence Maximization: |dentifying influential nodes.

Link Prediction Influence Maximization
= /
Understanding Convolutions on Graphs, doi.org/10.23915/distill.00032.
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3.5.3 Example 4: Deep Learning Potentials

Convolutional graph neural networks (message passing neural networks)

11415 >
7 3 6 6
117 >

Localized Convolution in GNNs
Understanding Convolutions on Graphs, doi.org/10.23915/distill.00032.
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3.5.3 Example 4: Deep Learning Potentials

Convolutional graph neural networks (message passing neural networks)

Polynomial filters on graphs

Consider a useful concept — the graph Laplacian:

D - A

L

Labelled graph Degree matrix Adjacency matrix Laplacian matrix
(200000\(010010\/2—100—1 0
Q 03000 0 1 010 1 -1 3 =1 0 =1 0
Qec 00 200 0 1 0 1 0 0 -1 2 -1 0 0
.‘ 000 3 0 0 010 1 1 0o 0 -1 3 -1 -1
96 0000 30 1010 0 S
\oooo0o01/ \oooz100/ \o o o -1 o 1/

D
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3.5.3 Example 4: Deep Learning Potentials

Convolutional graph neural networks (message passing neural networks)

Polynomial filters on graphs Color Scale
_f | 1—2

e Build polynomials based on graph

Laplacian which are equivalent of H B H B
filters. 0 Convolve
>
_ | || Pu(L) HE NN
e Convolution at given node occurs only [EEEE N =
with nodes not more than a certain Input Grid Output Grid

number of hops away. z € {0,1}% O z' € R%

e Polynomial filters are thus localized.
Convolutional Kernel at Highlighted Pixel

e Polynomial filters are node-order

. . 2
equivariant :
. 1 2
G pu(L) = wLi=1I + 0.1L + 0.01L%.
1=0
Understanding Convolutions on Graphs, doi.org/10.23915/distill.00032.

" — cﬂ’ CASUS
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3.5.3 Example 4: Deep Learning Potentials

Convolutional graph neural networks (message passing neural networks)

Node-order equivariant polynomial filters

Start with the original features. Color Codes:
B Computed node embeddings.

B Learnable parameters.

p(k) =D, & (L) Compute the matrix p(k) as the polynomial
v defined by the filter weights w'*) evaluated at L.

g(k) — p(k) X h(k—l) Multiply p(k) with h*~1): a standard matrix-
vector multiply operation.

k) __ k |
h( | — 7 (g( )) Apply a non-linearity o to g(k) to get (k)
Understanding Convolutions on Graphs, doi.org/10.23915/distil.00032.
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3.5.3 Example 4: Deep Learning Potentials

Convolutional graph neural networks (message passing neural networks)

Computing node-order equivariant embeddings

(0) Predictions can be made at each node by using the final computed embedding:
hv = Th forallv e V.
%, = PREDICT (h{/))
Node v's ... is just node v's
initial original features. where PREDICT is generally another neural network, learnt together with the GCN model.
embedding.

For each step k, the function f*), matrices 17 %) and B*) are shared across all nodes.

andfork =1,2,...upto K:
This allows the GCN model to scale well, because the number of parameters in the model is not tied to the size of the graph.

®) ® | o) wEN@) ®) (k1) o Key idea: Consider different kinds of aggregation and
h, = f |14 = = b 'hv forallv € V. . . . . . .
’ N ()] combination steps, beyond what is possible using polynomial
filters.
Node v's Mean ofv's Node v's e These can be viewed as “message-passing” between
embedding at neighbour's embedding at ] .
step k. embeddings at step k — 1. adjacent nodes: after each step, every node receives some
Stepikicl: information from its neighbours.
Color Codes: e By iteratively repeating the 1-hop localized convolutions K
M Enbeddindiotinods times, the receptive field of the convolution effectively
B Embedding of a neighbour of node v. inCIUdeS a” nOdeS Up tO K hOpS away
B (Potentially) Learnable parameters. )
Understanding Convolutions on Graphs, doi.org/10.23915/distill.00032.
I I |
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3.5.4 Example 5: MACE potential

charge
of atoms
e Represent the state of each node in a given layer by a tuple: agt) = (7, 2, hgt))

position learnable
of atoms features

e A message is created for each node by pooling over its mf;t) = @ Mt(agt), aj(.t))

neighbors: FEN(3) learnable
message function

D = Uof?, m?)

e In the update step, the message is transformed into new

features: learnable update function
learnable
. : T' readout function
e After a given number of message construction and update (t)
steps, the learnable readout functions map the node states to by = E R

the target — the local energy of a given atom:
I e I
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3.5.4 Example 5: Advanced Potentials

Foundation models

110 06.01.2025
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Multicomponent alloys
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[Ro[sr [ v Jzr [nb[pol v [RulRnpalAg|Cal in sn]sb] e 1 [xe]
s[5 [l [ | w [re[os] i | e[ aulHg| i ] of EZSETICE
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Equivariant Graph
Tensor Network

|. Batatia, et al., arXiv:2401.00096 (2023).
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