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1. Introduction
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1. Introduction
Materials simulations require multiple length and time scales
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1. Introduction
Time scales of first-principles and atomistic methods

Time taken for Period of electron orbit  Electronic dyn amics
o t°(;r05)s in hydrogen (150 as) o Time-dependent DFT
mm (3 ps .
I Time step in I Time step in Quark/gluon © TI m eSte pS Of attoseCO nd S
Swigfhifngt(’ft molecular dynamics | | electronic dynamics time-scales (1 ys)
world's fastes 1 o1 £ SomTadtona A . . . . .
iy R ) et e e First-principles and atomistic molecular
Picosecond Femto econd Attosecond  Zeptosecond Yoctosecond dyn amics
Ps 108°s 105 10 s o DFT and classical molecular dynamics
*f * i 1 f % ' 1 o Timesteps of femtoseconds
Rotational correlation Shortest laser pulse
time of water (1.7 ps) as of 2013 (67 as) Lifetime of W and Z
1 bosons (0.3 ys)
Period of optical
phonon in Si (64 fs)
I Period of electromagnetic
- radiation at gamma-ray/
Fastest chemical 1 X-ray boundary (17 zs)
reactions (200 s) Time for light to cross

3 hydrogen atoms (1 as)

Courtesy of Kay Dewhurst, Max Planck Institute of Microstructure Physics (2015).
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2. Born-Oppenheimer Potential Energy Surface

2.1 Molecular Hamiltonian

2.2 Schrodinger Equation of Coupled Electrons and lons
2.3 Born-Oppenheimer Approximation

2.4 Born-Oppenheimer Potential Energy Surface

2.5 Classical Interatomic Potentials

9 06.01.2025 Atomistic Simulation Methods Attila Cangi | a.cangi@hzdr.de
Machine Learning Interatomic Potentials




2.1 Molecular Hamiltonian

Atoms Bonds Molecules Nanoparticles 2D and 3D Proteins
structures
Complexity

N. Fedik et al., Nature Reviews Chemistry 6, 653 (2022).
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2.1 Molecular Hamiltonian

e Consider a collection of

o electrons r={ry,...,ry.}, r; R

o and ions R=Ri,...,Ry}, Ry €R?, M,(mass), Z,(charge)
e Non-relativistic quantum mechanics.
e We work within atomic units h = Me = 62 =1

o Energies are expressed in Hartree

o Lengths are expressed in Bohr radii

e For the sake of brevity we do not take into account spins.

D
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2.1 Molecular Hamiltonian

A A . A

H=T(R)+T%r)+V%R)+Vr,R) + V(r)

Kinetic energy of ions Kinetic energy of electrons
IS S V3
= 2%
= 2M,, J
Interaction between ions Interaction between electrons Interaction between electrons
and ions
N. N;
Py =30 L LI y) ViR = -3y e
2R, Rﬂ| 2|r3 — T - . |rj - Ra|
a f#a J k#j j o
I e R | ]
| o p—
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2.2 Schrodinger Equation of Coupled Electrons and lons

A A . A

H=T(R)+T%r)+V%R)+Vr,R) + V(r)

H¥(r,R)=EY(r,R)
e Solving the time-independent Schrodinger equation for the fully coupled problem is computationally

extremely challenging.

e Reducing the complexity of the electron-ion Hamiltonian is possible by separating ionic and electronic
degrees of freedom.

=» Born-Oppenheimer approximation

D
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2.3 Born-Oppenheimer Approximation

e Separate ionic and electronic degrees of freedom with a separation ansatz (remember three-dimensional
particle in a box or harmonic oscillator problem)

¥(r,R)=2(r;R) x(R)

e Obtain two Schrodinger equations. One for the electrons:
7°(r) + V(5 R) + V(5 R) + V(R)| 9(1; R) = En(R)®(r; R)

e and one for the ions:

[:f"?(ﬂ) + E, (B)] x(R) = Ex(R)

e Solving these coupled equations is feasible but still computationally demanding.

D
14  06.01.2025 Atomistic Simulation Methods Attila Cangi | a.cangi@hzdr.de i—i = i ’n q ‘\l gﬂﬂ:—z}ims
- SYSTEMS UNDERSTANDING

Machine Learning Interatomic Potentials



2.3 Born-Oppenheimer Approximation

e In a final simplification, we consider the ions as classical point-like particles.
e The dynamics of the ions follows Newtonian equations of motion:

0°R,,
W — _VRaEn(B) — Fa

M,
e The forces on the ions are obtained from the gradient of the eigenvalue from the electronic Schrodinger
equation:

7°(r) + V(5 R) + V(5 R) + V(R)| 9(1; R) = En(R)®(r; R)

e The eigenvalue of the electronic Schrodinger equation is a potential energy surface on which the ionic
dynamics takes place.

e Remarks:
o The separation of electronic and ionic degrees of freedom is feasible because the inverse dependence of the kinetic energy on
the particle mass results in a far smaller kinetic energy for the ions than for the electrons.
o  This approximation is valid as long as the motion of the ions happens on a much larger time scale than the motion of the
electrons.
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2.4 Born-Oppenheimer Potential Energy Surface

Saddle point Each point corresponds
to a molecular geometry.

Local minima

X
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2.5 Classical Interatomic Potentials
Overview of interatomic potentials (force fields)

Pair potentials Many-body potentials Machine learning potentials
Hard-sphere potential EAM potentials More details later...
Buckingham potential MEAM potentials

Morse potential Bond order potentials

Lennard-Jones potential Tersoff potentials
CHARMM potentials ReaxFF potentials
I N N e
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2.5 Classical Interatomic Potentials
Workflow of classical interatomic potentials

Fitting the PES with traditional interatomic potentials:

e Energy of an atom is computed using atomic coordinates within

the cutoff sphere (green)
e \With fixed values of the potential parameters
e The atomic energies of all atoms of the system are summed up

to obtain the total energy.
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2.5 Classical Interatomic Potentials
Pair potentials

Pair potentials parametrize the PES in terms of pair-wise (two-body) interactions:

E=V(r), r=|r;—r,

]
>

© Simple and analytical mathematical functions

¥ Efficient to evaluate

2 Run much faster than quantum mechanical calculations (DFT)
= How do you find an accurate functional form?

=) Parameters need to be determined empirically

= Are not as transferable than more complex potentials
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2.5 Classical Interatomic Potentials

Simple examples of pair potentials
Morse potential

Lennard-Jones potential
2
D, [1 - ematr=ro]

v =4 (9)" - (%)) V() =

Lu —— Sy
© 5
=
E =
.I min M
l'e Internuclear Separation (r)
Mark Somoza March, Wikimedia Commons.

. . - . .
r(A)
Christophe Rowley, Wikimedia Commons.
.
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2.5 Classical Interatomic Potentials
More complicated pair potentials

Classical interatomic potentials parametrize the PES in terms of structural, vibrational, and other
energy-based models from first-principles calculations (DFT).

CHARMMZ22 potential:
Vir)= Y kb—b)>+ >  ke(0—00)>+ D  ky[L+cos(ng—6)]
b 6 ¢

”bonds” ”angles” » dihedrals” Difficulty of determining parameters:
2 2
+ Z kw(w —wo)” + Z ku(u — uo) “An automated least-squares procedure
,,implf‘c’)pers,, ”Urey—%radley” often /ea_ds to a combination of
12 6 “unphysical” parameters that reproduce
R;; R;; qiq; the input data. More meaningful
+ Z €ij ~ —2 ~ + — parameter values, which have a wider
.. 'rz_j TzJ er’rz] . e .
) 1) ) range of applicability, were obtained
nonbonded manually with “reasonable” parameter

ranges for the optimization in the
iterative refinement procedure ...”

A. D. MacKerell et al., J. Phys. Chem. B 102 (18), 3586 (1998).
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3. Machine Learning Potentials

3.1 Introduction to Machine Learning

3.2 Neural Networks

3.3 Overview of Machine Learning Potentials
3.4 Data and Descriptors

3.5 Examples of Machine Learning Potentials
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3.1 Introduction to Machine Learning
What is machine learning?

“The use and development of computer systems that
are able to learn and adapt without following explicit
instructions, by using algorithms and statistical
models to analyse and draw inferences from patterns

in data.”

This process often involves three main steps
e Input data
e Training
e Prediction

Key categories of machine learning
e Supervised Learning
e Unsupervised Learning
e Reinforcement Learning
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3.1 Introduction to Machine Learning

Machine learning trends
Number of GitHub Al projects, 2011-23

Source: GitHub, 2023 | Chart: 2024 Al Index report
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3.1 Introduction to Machine Learning

Machine learning trends
Number of Al publications in the world, 2010-22

Source: Center for Security and Emerging Technology, 2023 | Chart: 2024 Al Index report
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3.1 Introduction to Machine Learning
Machine learning trends

Number of notable machine learning models by sector, 2003-23
Source: Epoch, 2023 | Chart: 2024 Al Index report
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3.1 Introduction to Machine Learning

Machine learning trends
Foundation models by access type, 2019-23

Source: Bommasani et al., 2023 | Chart: 2024 Al Index report
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3.1 Introduction to Machine Learning
Machine learning trends

Estimated training cost of select Al models, 2017-23
Source: Epoch, 2023 | Chart: 2024 Al Index report
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3.2 Neural Networks
Biological neurons

A neuron, also known as a nerve cell, is the basic functional unit of
the nervous system. Neurons are specialized cells that receive,
process and transmit information through electrical and chemical
signals.
A neuron is made up of three main parts:
e Cell body (soma)
Contains the nucleus and other organelles necessary for basic
cell functions.
e Dendrites
Tree-like projections that receive signals from other nerve cells
and transmit them to the cell body.

Cell body

.
Nucleus{

e Axon
A long, thin extension that conducts electrical signals away from
the cell body to other nerve cells, muscles or glands. The end of o /]
the axon branches into axon terminals that release Mnochondﬁon}m Denciie
neurotransmitters to transmit signals. N pendr ranches
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3.2 Neural Networks
Biological neurons

The function of a neuron can be divided into several steps:

e Reception of signals
Dendrites receive chemical signals from neighboring neurons.
These signals lead to changes in the membrane potential of the
neuron.

e Generation of an action potential
When the membrane potential reaches a certain threshold, an
action potential is triggered. This is a rapid change in the
membrane potential that spreads along the axon.

e Transmission of the action potential
The action potential travels along the axon to the axon terminals.
This occurs through a series of depolarizations and
repolarizations of the cell membrane.

Cell body

.
Nucleus{

Endoplasmic
reticulum

This variability of information transmission is reflected in the weights Mit°°h°"dfi°
of artificial neural networks. X
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3.2 Neural Networks
Short history of artificial neural networks

1950

Statistical Methods

Mathematical model of a
neuron

Frank Rosenblatt (1958):
Perceptron
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Rumelhart, Hinton,
Williams (1986):

Rediscovery of the
backpropagation algorithm
enables solving nonlinear
problems.

Backpropagation

1980

McCulloch und Pitts (1943):

Attila Cangi | a.cangi@hzdr.de

2023:
Large language models and
foundation models

2024:

Nobel Prize in Physics

Hopfield and Hinton

(artificial neural networks)

Nobel Prize in Chemistry

Baker, Hassabis, and Jumper

201 0 (protein structure and design)

Deep Learning Generative Al

2020

Krizhevsky, Sutskever,
Hinton (2012):
Convolutional neural
networks (AlexNet)

Google Brain (2017):
Transformer networks

~zoR Chnsys
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3.2 Neural Networks
Perceptron: Structure

e The simple perceptron model consists of an input layer and
an output layer.

e In the input layer, the input is (x1, Xgseens xn).

e The output layer consists of a single neuron. It contains the
network input (z) and the output value (y).

e This network can be used for binary classification, i.e. the
network can decide for an input whether it belongs to a
certain category.

e The classification is expressed by the output value (y).

_____
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3.2 Neural Networks
Perceptron: Forward propagation

Input

I1

8l
I

, neR, z; €R

Ln

Weights

wq
W= , W; €
Wn,
Input \ Output ;
I Bl I
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3.2 Neural Networks
Perceptron: Forward propagation

Net input

Z=wW1x1 + -+ WpTy

—wl .z
Z1
= (w1,...,wy)
Ln
- e N ]
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3.2 Neural Networks
Perceptron: Forward propagation

Activation and output

In the second and final step, we calculate the activation of the
output neuron, which also corresponds to the output of the
perceptron model.

An activation function is applied to the network input:

y =g(z+0b)

Input Output
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3.2 Neural Networks
Perceptron: Forward propagation

Examples of Activation Functions

1.0 1.0
0.5 - 0.5 -
et
=
S 0.0- 0.0 4
= §
o
—0.5 —0.5 -0.5
Linear Sigmoid Hyperbeltangeng
—1.0 T ) T _1.0 T T T T T —1.0 T T T T T
-1.0 -0.5 0.0 0.5 1.0 -4 =2 0 2 4 -5.0 =25 0.0 2.5 5.0
1.0 1.0 1.0
0.5 - 0.5 - 0.5 -
5
S 0.0 0.0 0.0 -
-
o
—0.5 —0.5 ‘ —0.5 - -
RelU Leaky RelLU SiLU
_1.0 T T T _1.0 T T T _1.0 T T T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0 -4 =2 0 2 4
Input Input Input
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3.2 Neural Networks
Perceptron: Learning process

In the context of the perceptron model, we understand learning as the gradual adaptation of the weights to the
desired target function with the help of training data.

Labeled Data
Training data is, for example, a series of data with a label.

Data labeled as cat
and non-cat.

The training data can therefore be written as pairs of feature vectors and labels:
-k _k
(‘Tay) kE{l,,N}

With a neural network, we must distinguish between the calculated output of the current network and the correct
output of a training example.
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3.2 Neural Networks
Perceptron: Learning process

Learning Step

Learning means that we calculate the output for each training example and then adjust the weights. This is

called a learning step.
We can therefore adjust the weight vector for the pairs of feature vectors and labels in each learning step by

adding a change of all weights to the current value:

w; = w; + Aw;

We will define a concrete rule for adjusting the weights in a moment. First let’s look at the properties of the

weight update:
e If the calculated output is greater than the reference value, the weight update should be negative, i.e. the

weight of this neuron should be weakened.
e If the calculated output is smaller than the reference value, the weight update should be positive, i.e. the

weight is increased.
e If the calculated output and the reference value are the same, no weighting update should take place.
I e I e

38 06012025  Atomistic Simulation Methods Attila Cangi | a.cangi@hzdr.de . | ‘ \’ CASVUS
- SYSTEMS UNDERSTANDING

Machine Learning Interatomic Potentials



3.2 Neural Networks
Perceptron: Gradient descent

Loss Function

In order to derive a suitable learning rule, we must first define the term loss function:
1 N
Lw) = 55 2. " -

It is @ multidimensional function of the weights or the weight vector

39 06.012025  Atomistic Simulation Methods Attila Cangi | a.cangi@hzdr.de == @ CASUS
SYSTEMS UNDERSTANDING

Machine Learning Interatomic Potentials




3.2 Neural Networks
Perceptron: Gradient descent

Learning Rule: Minimum of the Loss Landscape

We can now use the loss function to derive a learning rule by setting ourselves the goal of minimizing the
value of the loss function. This means that we look for valleys in the parameter landscape.
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3.2 Neural Networks
Perceptron: Weight update

Use the gradient of the loss landscape, which informs us about
the largest increase in the error landscape. We therefore take
the negative gradient and thus obtain our learning rule:

AW = —aVL(w)
OL(w)

6w1

|
I
Q

OL(w
ow,,

where we have also introduced the learning rate.

As can be seen in the figure, updating the weights in the
direction of the negative gradient causes us to run in the
direction of the minimum of the loss landscape.
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3.2 Neural Networks
Perceptron: Weight update

Rewrite the loss terms, so we can take a derivative with respect to the
weights:
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3.2 Neural Networks
Perceptron: Weight update

Now we can evaluate the derivative:

oL s —»k
6wi 810,, 2N Z
1 0 P e\ 2
T 2N Z ow; (yk wak)
k=1 ¢

_ (x:f\ _

_ \xszz) _
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3.2 Neural Networks
Perceptron: Learning Algorithm

With the help of the derived learning rule, we can now formulate a learning algorithm.

1.initialize all weights w = (wy, . . . , Wy,).
2. for each epoch:
o Set Aw; =0
o For each set of training data (z*, y*),k = 1,..., N:

= Calculate output yk.

= Calculate weight update: Aw? = Aw? + (v* — §*)z*

s,
o Calculate the mean of all weight updates over the training data: Aw; = +- Zivzl A'wi.“.

o Update all weights w; = w; + Aw;

D
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3.2 Neural Networks
Perceptron: Batch processing of training data

We have implemented the perceptron in such a way that the

matrix x contains all feature vectors.
| g(z+0b) |

This ensures that all training data is run through before the w -

weights are updated. The feature vectors are stacked on top of |

each other to form an N x 3 input matrix. u i
- B 2

It should be noted that the first column of the matrix represents . w | — 2

the bias neuron, i.e. contains only ones. | ' o L

By matrix multiplying the N x 3 input matrix with the 3 x 1 weight

vector, we obtain an N x 1 output vector that contains all outputs w 2 | 2)

for all training examples. e

. N x3 3x1 N x1
The input vectors are actually row vectors and stacked on top of
each other.
I .|

D
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3.2 Neural Networks
Perceptron: Batch processing of training data

However, we can make the implementation more efficient by “broadcasting” the weight of the bias neuron.

__________________________________________________________________________

(5]
w2
N x 2 2x1 Nx1 N x1
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3.2 Neural Networks
Perceptron: Implementation of the weight update

Recall the definition of the weight update:
U:=w+ Aw

OL(w) « al _

i@y )+ -+ N —7Y)

2x N Nx1 2x1
B D D
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3.2 Neural Networks
Feedforward neural networks

Activation function o

e Composed of simple base units (neurons, perceptrons).
e The base units perform mathematical operations.
e Data flows in one direction
o input layer — hidden layers — output layer
e Neurons apply activation functions to introduce non-linearity,
enabling the network to model complex patterns.

p(x) = o(w -z + b) ®

Width w of
layer |

I | | |
Input laye Output layer
1=0 =N,
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3.2 Neural Networks
Feedforward neural networks

e Hidden layer in a feedforward neural network

T4l = O'(Wlwl + bl)

e \Weights and biases are adjusted during
training using by minimizing a loss function.

min L(x,y, W, b
W.b .y ’;)
1 <& . 2
L(z,y, W,b) = - > (@ —vy)
J j=1
L >
=N Z (M (x;, W,b) — yj]
J j=1
I e - I
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In each iteration of training the weights and
biases of the network are determined by the
backpropagation algorithm.

Weights and biases are updated using
stochastic gradient descent.

N,
8
WL-I—l,l,X — WL,],X — N— Z vVVN1,XL (mQ yC)
m =1

D
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3.2 Neural Networks
Feedforward neural networks

Activation function o

e Model parameters such as weights and biases are
updated during training using stochastic gradient
descent.

e \What about other parameters, such as layer width,
the number of layers, activation function, and
learning rate?

Width w of
layer |

e These are hyper-parameters and must adjusted
during training separately.

e Hyperparameter optimization is the process of
identifying the ideal model architecture and
training procedures.
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3.2 Neural Networks
Neural network tutorial

Tutorial on the basics of neural networks
e https://github.com/GDS-Education-Community-of-Practice/DSECOP

Data Science Education

%Ps Community of Practice
(DSECOP)

D
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