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Neural Networks
Biological Neurons

A neuron, also known as a nerve cell, is the basic functional unit of the nervous system. 

Neurons are specialized cells that receive, process and transmit information through 

electrical and chemical signals.

A neuron is made up of three main parts:

● Cell body (soma)

Contains the nucleus and other organelles necessary for basic cell functions.

● Dendrites

Tree-like projections that receive signals from other nerve cells and transmit them to 

the cell body.

● Axon

A long, thin extension that conducts electrical signals away from the cell body to other 

nerve cells, muscles or glands. The end of the axon branches into axon terminals that 

release neurotransmitters to transmit signals.
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Neurons in the cerebral cortex
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Neural Networks
Biological Neurons

The function of a neuron can be divided into several steps:

● Reception of signals

Dendrites receive chemical signals from neighboring neurons. These signals lead to 

changes in the membrane potential of the neuron.

● Generation of an action potential 

When the membrane potential reaches a certain threshold, an action potential is 

triggered. This is a rapid change in the membrane potential that spreads along the 

axon.

● Transmission of the action potential

The action potential travels along the axon to the axon terminals. This occurs through 

a series of depolarizations and repolarizations of the cell membrane.

This variability of information transmission is reflected in the weights of artificial neural 

networks.
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Neurons in the cerebral cortex
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Neural Networks
Short History of Artificial Neural Networks
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Perceptron
Structure
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The simple perceptron model consists of an input layer and 
an output layer.

In the input layer, the input is  (x
1
,
 
x

2
,..., x

n
).

The output layer consists of a single neuron. It contains the 
network input (z) and the output value (y).

This network can be used for binary classification, i.e. the 
network can decide for an input whether it belongs to a 
certain category. 

The classification is expressed by the output value (y).
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Perceptron
Forward Propagation
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Input

Weights
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Perceptron
Forward Propagation
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Net input
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Perceptron
Forward Propagation
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Activation and output
In the second and final step, we calculate the activation of 
the output neuron, which also corresponds to the output of 
the perceptron model.

An activation function is applied to the network input:
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Perceptron
Forward Propagation
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Examples of Activation Functions
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Perceptron
Learning Process
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In the context of the perceptron model, we understand learning as the gradual adaptation of the weights to the desired 
target function with the help of training data.

Labeled Data
Training data is, for example, a series of data with a label.

The training data can therefore be written as pairs of feature vectors and labels:

With a neural network, we must distinguish between the calculated output of the current network and the correct 
output of a training example.

Data labeled as cat 
and non-cat.
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Perceptron
Learning Process
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Learning Step

Learning means that we calculate the output  for each training example and then adjust the weights. This is called a 
learning step.

We can therefore adjust the weight vector for the pairs of feature vectors and labels in each learning step by adding a 
change of all weights to the current value:

We will define a concrete rule for adjusting the weights in a moment. First let’s look at the properties of the weight 
update:
● If the calculated output is greater than the reference value, the weight update should be negative, i.e. the weight of 

this neuron should be weakened.

● If the calculated output is smaller than the reference value, the weight update should be positive, i.e. the weight is 
increased.

● If the calculated output  and the reference value are the same, no weighting update should take place.
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Perceptron
Gradient Descent
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Loss Function

In order to derive a suitable learning rule, we must first define the term loss function:

It is a multidimensional function of the weights or the weight vector 
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Perceptron
Gradient Descent
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Learning Rule: Minimum of the Loss Landscape

We can now use the loss function to derive a learning rule by setting ourselves the goal of minimizing the value of the 
loss function. This means that we look for valleys in the parameter landscape.
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Perceptron
Weight Update
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Use the gradient of the loss landscape, which informs us about the 
largest increase in the error landscape. We therefore take the 
negative gradient and thus obtain our learning rule:

where we have also introduced the learning rate. 

As can be seen in the figure, updating the weights in the direction of 
the negative gradient causes us to run in the direction of the 
minimum of the loss landscape.
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Perceptron
Weight Update
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Rewrite the loss terms, so we can take a derivative with respect to 
the weights:
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Perceptron
Weight Update
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Now we can evaluate the derivative:
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Perceptron
Weight Update
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At the end we resubstitute the the definition of the activation function and the output:

Thus, we have derived our learning rule using gradient descent. 
As we can see, we first need to process the sum over all training data 
(N times) to calculate our weight update for a learning step.
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Binary Classification with the Perceptron
Learning Algorithm

19

With the help of the derived learning rule, we can now formulate a learning algorithm.
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Binary Classification with the Perceptron
Batch Processing of the Training Data
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We have implemented the perceptron in such a way that 
the matrix x contains all feature vectors. 

This ensures that all training data is run through before the 
weights are updated. The feature vectors are stacked on 
top of each other to form an N x 3 input matrix. 

It should be noted that the first column of the matrix 
represents the bias neuron, i.e. contains only ones. 

By matrix multiplying the N x 3 input matrix with the 3 x 1 
weight vector, we obtain an N x 1 output vector that 
contains all outputs for all training examples.

The input vectors are actually row vectors and stacked on 
top of each other.
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Binary Classification with the Perceptron
Batch Processing of the Training Data
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However, we can make the implementation more efficient 
by “broadcasting” the weight of the bias neuron.
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Binary Classification with the Perceptron
Implementation of the Weight Update
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Recall the definition of the weight update:
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Outline
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Electronic Structure Problem

Molecular structure, Crystal structure, Charge density, Cohesive 
energy, Elastic properties, Vibrational properties, Magnetic order, 
Dielectric susceptibility, Magnetic susceptibility, Phase transitions, 
Bond dissociation, Enthalpies of formation, Ionization potential, 
Electron affinity, Band gaps, Equation of state

Non-relativistic Schrödinger equation Molecular and materials properties

27
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Density Functional Theory

K. Burke, „The ABC of DFT“.
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Density Functional Theory

Most popular method for solving the electronic structure 

problem

One of the world’s largest computational expenses

29

Pribram-Jones et al., 
https://doi.org/10.1146/annurev-physchem-040214-121420

2022 ALCF Annual report, https://ar22.alcf.anl.gov/
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Outline
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Motivation
State of the art in combining electronic structure theory with machine learning
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Machine learning the 
electronic structure 
(this work)

Meta study analyzing 370 research articles 

L. Fiedler, K. Shah, M. Bussmann, A. Cangi, Phys. Rev. 
Mater. 6, 040301 (2022).
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Machine Learning
Neural Networks
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What is a suitable representation for a machine 
learning model that can replace density 

functional theory?



                                                                                                             Attila Cangi   |   a.cangi@hzdr.de

Need a suitable ML model yielding total energies. The KS kinetic energy is problematic.

Express the total energy as

With the band energy 

Materials Learning Algorithms
Finding a suitable representation for machine learning

34
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Consider the local density of states:

(Diagonal of the single-particle Green function)

(Electron density)

(Density of states) (Band energy)

This allows us to evaluate the total energy from just one quantity – the local density of states.

We have also extended this to finite electronic temperature.

Materials Learning Algorithms
Finding a suitable representation for machine learning

35
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Materials Learning Algorithms
Spatially resolved neural-network model for the local density of states 
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Materials Learning Algorithms

37

Input
Atomic configuration around each grid point

Output
Local density of states at each grid point
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Materials Learning Algorithms
Spaces of Interpolation
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Phase boundaries, i.e., ionic configurations 
J. A. Ellis, L. Fiedler, G. A. Popoola, N. A. Modine, J. A. Stephens, A. P. Thompson, A. Cangi, S. Rajamanickam, Accelerating 
Finite-temperature Kohn-Sham Density Functional Theory with Deep Neural Networks, Phys. Rev. B 104, 035120 (2021).

Temperatures
L. Fiedler, N. A. Modine, K. D. Miller, A. Cangi, Machine learning the electronic structure of matter across temperatures, 
Phys. Rev. B 108, 125146 (2023).

Number of atoms 
L. Fiedler, N. A. Modine, S. Schmerler, D. J. Vogel, G. A. Popoola, A. P. Thompson, S. Rajamanickam, A. Cangi, Predicting 
electronic structures at any length scale with machine learning, Npj Comput. Mater. 9, 115 (2023).

Mass density, Temperature-mass density, Atomic species, …
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Materials Learning Algorithms

Interpolation across phase boundaries
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Materials Learning Algorithms
Interpolation across phase boundaries

Solid snapshot Liquid snapshot

40

Aluminum at the melting point (933 K) and ambient mass density (2.7 g/cc) 
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Materials Learning Algorithms
Interpolation across phase boundaries

Density of states

41
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Materials Learning Algorithms
Interpolation across phase boundaries

Electron density

42

MAE: 0.0002 e−/Å3

Max AE: 0.0025 e−/Å3
MAE: 0.0003 e−/Å3

Max AE: 0.0060 e−/Å3
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Materials Learning Algorithms
Interpolation across phase boundaries

Total energy

43

≈100 meV/atom
ML model can 

resolve the 

energy gap 

between the two 

phases.
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Materials Learning Algorithms

Interpolation across temperatures

44
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Materials Learning Algorithms
Interpolation across temperatures
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Separate treatment of electronic and 
ionic temperature possible (laser-heated 
matter).

High accuracy across range of 
temperatures. 

Extrapolation in electronic temperature 
domain trivially possible due to 
properties of the local density of states 
(infinite sum over energy eigenstates).
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Materials Learning Algorithms
Interpolation across temperatures
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Materials Learning Algorithms
Interpolation across temperatures
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Materials Learning Algorithms
Interpolation across temperatures
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Separate treatment of electronic and 
ionic temperature possible (laser-heated 
matter).

High accuracy across range of 
temperatures. 

Extrapolation in electronic temperature 
domain trivially possible due to 
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Materials Learning Algorithms

Interpolation across the number of atoms
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Materials Learning Algorithms
Interpolation across the number of atoms
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Materials Learning Algorithms
Interpolation across the number of atoms

Computational cost

Conventional DFT scales with the cube of 
the systems size.

We achieve linear scaling and enable 
large-scale DFT calculations.

51
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Materials Learning Algorithms
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Materials Learning Algorithms
Interpolation across the number of atoms

Accuracy

Benchmarks at DFT scales (up to 2000 atoms). 

Total energies are very accurate and errors do 
not increase with system size. 

Also density prediction is highly accurate.

53
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Materials Learning Algorithms
Interpolation across the number of atoms

Accuracy

Benchmarks at DFT scales (up to 2000 atoms). 

Compare predicted energies with a 

conventional interatomic potential 

(EAM potential). 

54
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Materials Learning Algorithms
Interpolation across the number of atoms

Stacking fault

Introduce a stacking fault into a slab of 
Beryllium (change local crystal structure 
from hcp to fcc).

Predict the electronic structure for this 
system that contains 131,072 atoms.

55
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Summary and Outlook
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Development goals
Scalability
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Summary and Outlook
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Development goals
Scalability
Web user interface for deploying models
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Fuchs et al., arXiv:2006.10503 (2020).

Development goals
Scalability
Web user interface for deploying models
Graph neural networks
● SE(3) - Symmetry group of 3D rotations and 

translations
● Equivariant - The vector output changes 

with the same group transformation as the 
input

● Graph - Works on point-clouds, is entirely 
grid-free

● Attentional - Can selectively focus on 
relevant pieces of information

● Neural Networks - Go fast on a GPU 
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Summary and Outlook
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Development goals
Scalability
Web user interface for deploying models
Graph neural networks
Physics-informed machine learning

Inverting the KS equations

Fourier neural operators

V. Martinetto, K. Shah, A. Cangi, A. Pribram-Jones, 
Mach. Learn.: Sci. Technol. 5 015050 (2024).
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Summary and Outlook
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Development goals
Scalability
Web user interface for deploying models
Graph neural networks
Physics-informed machine learning

Machine learning electron dynamics

Back-propagation

K. Shah, P. Stiller, N. Hoffmann, A. Cangi, NeurIPS 
Workshop Machine Learning and the Physical 
Sciences (2022).

Physics-informed neural networks
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Summary and Outlook

64

Development goals
Scalability
Web user interface for deploying models
Graph neural networks
Physics-informed machine learning
Multi-modal output
Foundation models for electronic structures

Science goals
Transferability for other parameter spaces 

Mass density, electric fields, electronic spin, heterogeneous and 
complex materials 

Dynamics
Machine-learning driven first-principles molecular dynamics 
with access to the electronic structure

Scalable simulations of challenging systems, such as semiconductor devices

Nat. Commun. 14, 3954 (2023).

Neuromorphic computing

Nat. Rev. Phys. 3, 249 (2021).

Scanning tunneling microscopy

Nature 601, 343 (2022).

Semiconductor devices

Nat. Phys. 17, 374 (2021). 

Twisted Moiré layers
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Normand A. Modine, Dayton J. 
Vogel, Kyle D. Miller, Aidan P. 
Thompson, Sivasankaran 
Rajamanickam

Thanks for your attention

Thanks to my team and collaborators!
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