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Biological Neurons

A neuron, also known as a nerve cell, is the basic functional unit of the nervous system.
Neurons are specialized cells that receive, process and transmit information through
electrical and chemical signals.

A neuron is made up of three main parts:

e Cell body (soma)
Contains the nucleus and other organelles necessary for basic cell functions.

Neurons in the cerebral cortex

e Dendrites
Tree-like projections that receive signals from other nerve cells and transmit them to

Cell body

Telodendria

the cell body.

. o e
A long, thin extension that conducts electrical signals away from the cell body to other AXAR T
nerve cells, muscles or glands. The end of the axon branches into axon terminals that

Golgi apparatus

Dendrite

release neurotransmitters to transmit signals. /\3m

| \ Dendritic branches
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Neural Networks
Biological Neurons

The function of a neuron can be divided into several steps:

® Reception of signals
Dendrites receive chemical signals from neighboring neurons. These signals lead to
changes in the membrane potential of the neuron.

e Generation of an action potential
When the membrane potential reaches a certain threshold, an action potential is
triggered. This is a rapid change in the membrane potential that spreads along the
axon.

e Transmission of the action potential
The action potential travels along the axon to the axon terminals. This occurs through
a series of depolarizations and repolarizations of the cell membrane.

This variability of information transmission is reflected in the weights of artificial neural

networks.
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Neurons in the cerebral cortex

Cell body

Telodendria

Synaptic terminals

Golgi apparatus
Endoplasmic /4
reticulum

Mitochondrion \g Dendrite
/ J \ Dendritic branches
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Neural Networks

Short History of Artificial Neural Networks

1950

Statistical Methods

McCulloch und Pitts (1943):
Mathematical model of a
neuron

Frank Rosenblatt (1958):
Perceptron

Rumelhart, Hinton,
Williams (1986):

Rediscovery of the
backpropagation algorithm
enables solving nonlinear
problems.

Backpropagation

1980

2010

Deep Learning

Krizhevsky, Sutskever,
Hinton (2012):
Convolutional Neural
Networks (AlexNet)

Google Brain (2017):
Transformer Networks
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2023:
Large Language Models
and Foundation Models

Generative Al

2020
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Perceptron
Structure

The simple perceptron model consists of an input layer and
an output layer.

In the input layer, the input is (xl, X o) xn).

The output layer consists of a single neuron. It contains the
network input (z) and the output value (y).

This network can be used for binary classification, i.e. the
network can decide for an input whether it belongs to a
certain category.

The classification is expressed by the output value (y).

________________________________

________________
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Forward Propagation
Input
I
Z = , neR, z; eR
Ln
Weights
wq
w = , w; €R
Wnp,

________________________________________________
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Perceptron
Forward Propagation

Net input

Z2=w1x1+ "+ wpLT,

—agf .7

I
= (wy,...,wy)

x'n

________________________________________________
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Forward Propagation

Activation and output

In the second and final step, we calculate the activation of

the output neuron, which also corresponds to the output of
the perceptron model.

An activation function is applied to the network input:

y=g(z+0b)

________________________________________________
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Forward Propagation

Examples of Activation Functions
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Perceptron
Learning Process

In the context of the perceptron model, we understand learning as the gradual adaptation of the weights to the desired
target function with the help of training data.

Labeled Data
Training data is, for example, a series of data with a label.

Data labeled as cat

iﬁ and non-cat.

The training data can therefore be written as pairs of feature vectors and labels:

(fkayk) kE{l,,N}

With a neural network, we must distinguish between the calculated output of the current network and the correct
output of a training example.
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Learning Process

Learning Step

Learning means that we calculate the output for each training example and then adjust the weights. This is called a
learning step.

We can therefore adjust the weight vector for the pairs of feature vectors and labels in each learning step by adding a
change of all weights to the current value:

We will define a concrete rule for adjusting the weights in a moment. First let’s look at the properties of the weight

update:
e If the calculated output is greater than the reference value, the weight update should be negative, i.e. the weight of

this neuron should be weakened.

e If the calculated output is smaller than the reference value, the weight update should be positive, i.e. the weight is
increased.

e If the calculated output and the reference value are the same, no weighting update should take place.
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Gradient Descent

Loss Function

In order to derive a suitable learning rule, we must first define the term loss function:
N

Lw) = 5o S [ - )’
k=1

It is @ multidimensional function of the weights or the weight vector
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Perceptron
Gradient Descent

Learning Rule: Minimum of the Loss Landscape

We can now use the loss function to derive a learning rule by setting ourselves the goal of minimizing the value of the
loss function. This means that we look for valleys in the parameter landscape.
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Perceptron
Weight Update
Use the gradient of the loss landscape, which informs us about the

largest increase in the error landscape. We therefore take the
negative gradient and thus obtain our learning rule:

AW = —a VL(w)
OL(w)
Bwl
= — .
OL(w
ow,,

where we have also introduced the learning rate.

As can be seen in the figure, updating the weights in the direction of
the negative gradient causes us to run in the direction of the
minimum of the loss landscape.

Attila Cangi | a.cangi@hzdr.de




CASUS
Perceptron 2d e

Weight Update

Rewrite the loss terms, so we can take a derivative with respect to
the weights:

1 & 2
L(w) = o > [v* — "]

Attila Cangi
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-

Weight Update

Now we can evaluate the derivative:

3L_ 0 1 k:_—*T—*k2
O PNy
N
_ 1 O (kT ok\2
e -
_Li2(k_wak)i(k_wak)
—2 1 y Bw,, y

_ Ay

_ \mzz/ _

[(wizh + - +walf + - + wazh)]

6wz-
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At the end we resubstitute the the definition of the activation function and the output:

OL(w)
“ awz

[y* — g(z*)] =¥

sz-=—

=5

=z R

(v* — §*) ¥

M= 1M

>~
I
[

Thus, we have derived our learning rule using gradient descent.
As we can see, we first need to process the sum over all training data
(N times) to calculate our weight update for a learning step.
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Learning Algorithm

With the help of the derived learning rule, we can now formulate a learning algorithm.

1.initialize all weights w = (wo, . . . , Wy).
2. for each epoch:
o Set Aw; =0
o For each set of training data (a:k, yk), k=1,:5: ;I\

= Calculate output yk.

= Calculate weight update: Aw® = Aw® + (y* — g*)z>.

7

o Calculate the mean of all weight updates over the training data: Aw; = + fozl Awf.

o Update all weights w; = w; + Aw;
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Batch Processing of the Training Data

We have implemented the perceptron in such a way that
the matrix x contains all feature vectors.

This ensures that all training data is run through before the |

weights are updated. The feature vectors are stacked on L B ‘ -

Lo
top of each other to form an N x 3 input matrix.
. . i 0
It should be noted that the first column of the matrix L ‘ 2 | o N i
: . : : 0
represents the bias neuron, i.e. contains only ones. ' S [— "i_il
. Ly p—
By matrix multiplying the N x 3 input matrix with the 3 x 1 L
. . Wa
weight vector, we obtain an N x 1 output vector that _N
contains all outputs for all training examples. L

The input vectors are actually row vectors and stacked on o |
top of each other.

N x3 3 x1 N x

[l
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Binary Classification with the Perceptron
Batch Processing of the Training Data

However, we can make the implementation more efficient
by “broadcasting” the weight of the bias neuron.

__________________________________________________________________________

g9(z+b)
. ©Owo |
m% m% w 7
‘ —1
i = 2
g2 | 2 E
| E
w1 i
Wao ; —I_ o

N x2 2x1 N x1 Nx1
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Implementation of the Weight Update

Recall the definition of the weight update:
W= w+ AW

oL N
i1 g
’ k=1

Aw; = —«

yl—:tjl
y2—372
& z; a7 ziy' — )+ +ad @Y - 7V)
2 | @ 22 23y —9)+ -+ a2 " —7")
yN_gN
2xN Nx1 2x1
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Motivation
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Theoretical Background

Electronic Structure Problem

Density Functional Theory
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Electronic Structure Problem

Non-relativistic Schrodinger equation

A

H(r,R)¥(r,R) = E¥(r,R)

T(r) = —%’2

. Ne Xep 1

Vee(r)2222|r — 1|
iog#d ot

A N, N; 7

Valt; R) = = Zza: r; —aRa|
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Molecular and materials properties

Molecular structure, Crystal structure, Charge density, Cohesive
energy, Elastic properties, Vibrational properties, Magnetic order,
Dielectric susceptibility, Magnetic susceptibility, Phase transitions,
Bond dissociation, Enthalpies of formation, lonization potential,
Electron affinity, Band gaps, Equation of state

Attila Cangi | a.cangi@hzdr.de
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1 4 . . .
2 : : __ :
[_iv -+ US(P,E)] ¢](raﬂ') — €]¢](raﬂ) z_k
O |
Us(r; B) — 56Z‘[T;]{) + (?E(XC[R]) + Uez(r R\ -2} Kohn-Sham potenllal
n(r; R n(r b e
4 . ~ 20
* . . -6} /// ///
R) = Z ij (r;R) oy (r;R) K // He atom
] -8 :

0 0.2 04 ,. 06 0.8 1

K. Burke, ,The ABC of DFT*.

Elin] = Tfn] + Uln] + Bxcln) + / B n(r: R)ve (r: R)
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Density Functional Theory

Most popular method for solving the electronic structure
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One of the world’s largest computational expenses

problem
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I Other
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O EE Engineering 18
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2022 ALCF Annual report, https://ar22.alcf.anl.gov/
Pribram-Jones et al.,
https://doi.org/10.1146/annurev-physchem-040214-121420
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State of the art in combining electronic structure theory with machine learning

140 pum Property mappings

mmm  Interatomic potentials Machine learning the

1207 mmm Learning electronic structure — electronic structure
B Other approaches (this work)
100 mmm Technical aspects
= 80-
©
=
S 601
o
40
201 Meta study analyzing 370 research articles
0- L. Fiedler, K. Shah, M. Bussmann, A. Cangi, Phys. Rev.

2013 2014 2015 2016 2017 2018 2019 2020 Mater. 6, 040301 (2022).
year of publication
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Neural Network Model for Density Functional Theory
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Neural Networks

Optimize loss function based on the difference between true and predicted values

What is a suitable representation for a machine

learning model that can replace density
- functional theory?

Input Neural Network Prediction Loss
(Trainable Parameters)

Attila Cangi | a.cangi@hzdr.de 33
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Finding a suitable representation for machine learning

[m}

Need a suitable ML model yielding total energies. The KS kinetic energy is problematic.

E|n] :-—I— Uln|+ Exc(n] + /d3r n(r) ve;(r)

Express the total energy as

Eln|=FE, — U+ Exc|n| — /d3’r n(r) vxc(r)

With the band energy

Ey = Zej =Ts + /d3r n(r)vs(r) =Ts + /d3r n(r) [v.(r) + vy(r) + vxe(r)]

J
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Finding a suitable representation for machine learning

Consider the local density of states:

d(é, I‘) = Z qb;( (I')ij (I‘)5(€ — €j> = Gs(e, r, r = r) (Diagonal of the single-particle Green function)
J
n(r) = /de d(e, I') (Electron density)

D(e) — /d3r d(e, r) (Density of states) E, = Zej — /de eD(e) (Band energy)
' J

This allows us to evaluate the total energy from just one quantity — the local density of states.
3
En]=FEy, — U+ Exc|n| — / d°r n(r) vxc(r)

We have also extended this to finite electronic temperature.
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Spatially resolved neural-network model for the local density of states

Neighborhood
around a grid
point

HH gt
GO
m(

Atom Cartesian grid
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First-principles calculations > Finite eImpetaltie > Obsevables
DFT calculations (energies, forces, ...)

Input
Atomic configuration around each grid point

Output
Local density of states at each grid point

; 3L b OO

Materials Learning Algorithms

O github.com/mala-project
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Materials Learning Algorithms
Spaces of Interpolation

Phase boundaries, i.e., ionic configurations
J. A. Ellis, L. Fiedler, G. A. Popoola, N. A. Modine, J. A. Stephens, A. P. Thompson, A. Cangi, S. Rajamanickam, Accelerating
Finite-temperature Kohn-Sham Density Functional Theory with Deep Neural Networks, Phys. Rev. B 104, 035120 (2021).

Temperatures
L. Fiedler, N. A. Modine, K. D. Miller, A. Cangi, Machine learning the electronic structure of matter across temperatures,
Phys. Rev. B 108, 125146 (2023).

Number of atoms
L. Fiedler, N. A. Modine, S. Schmerler, D. J. Vogel, G. A. Popoola, A. P. Thompson, S. Rajamanickam, A. Cangi, Predicting
electronic structures at any length scale with machine learning, Npj Comput. Mater. 9, 115 (2023).

Mass density, Temperature-mass density, Atomic species, ...
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Interpolation across phase boundaries
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Interpolation across phase boundaries

Aluminum at the melting point (933 K) and ambient mass density (2.7 g/cc)
Solid snapshot Liquid snapshot
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Materials Learning Algorithms
Interpolation across phase boundaries

Density of states

2007 — DFT LDOS Target 2007 —— DFT LDOS Target
7 ---- ML-DFT Prediction 7 ---- ML-DFT Prediction
2 —— Fermi Energy I 2 —— Fermi Energy I
o 100+ & 100
(@) o
& a)

0 T T T T T T T T 0 T T T T T T T T
-4 -2 0 2 4 6 8 10 5 -4 -2 0 2 4 6 8 10
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> > 1

) 9

S S 0-

L w

n n —1-

8 8 —— ML-DFT Pred. DOS Error
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-4 -2 0 2 4 6 8 10 -4 -2 0 2 4 6 8 10

Energy (eV)
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Materials Learning Algorithms
Interpolation across phase boundaries

Electron density

0.05

0.05 A

o
=]
.;>

0.04 4

0.03
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ML-DFT Predicted Electron Density (e7/A3)
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Max AE:  0.0060 e /A3
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Interpolation across phase boundaries

Total energy
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—— Liquid/Solid Snapshots
g—63200- o DFT LDO.STarg.ets:
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Interpolation across temperatures
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Interpolation across temperatures

120 r0.10
Separate treatment of electronic and s 10.08
ionic temperature possible (laser-heated = 80 0.06 =
matter). = 60 004 =
a 3
40+ r0.02 <
High accuracy across range of 201/ “10.00
temperatures. 0 ~0.02
-25 0.0 25 50 7.5 10.0
€ [eV]

H . H ——— D[Te = 100K] —— AD[T. = 100K; T = 2000K]
Extrapolation in electronic temperature e Bl 00k BT e (01 o TO0KT
domain trivially possible dueto Dlte = 6000K]
properties of the local density of states | Temperature

(infinite sum over energy eigenstates).

S (more temperatures need to be sampled)
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Interpolation across temperatures

Separate treatment of electronic and
ionic temperature possible (laser-heated
matter).

High accuracy across range of
temperatures.

Extrapolation in electronic temperature
domain trivially possible due to
properties of the local density of states
(infinite sum over energy eigenstates).
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Materials Learning Algorithms
Interpolation across temperatures

Separate treatment of electronic and
ionic temperature possible (laser-heated
matter).

High accuracy across range of
temperatures.

Extrapolation in electronic temperature
domain trivially possible due to
properties of the local density of states
(infinite sum over energy eigenstates).
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e Ao DFT o 10 configurations
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atures (more temperatures need to be sampled)

Diversity within temperature (more samples per temperature needed)
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Interpolation across the number of atoms
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Materials Learning Algorithms
Interpolation across the number of atoms

Network training:
256 atom calculations

Network inference:
131072 atoms
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Computational cost 102
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We achieve linear scaling and enable g
large-scale DFT calculations. O
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Materials Learning Algorithms
Interpolation across the number of atoms

Computational cost

Conventional DFT scales with the cube of
the systems size.

We achieve linear scaling and enable
large-scale DFT calculations.
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Table 2. Complete report of timings for DFT and ML calculations.

Number of DFT (Quantum ESPRESSO) ML (MALA)
atoms

Wall No. CPU Wall No. CPU
time [h] CPUs time [h] time CPUs time [h]
[h]

128 0.033 96 3.2 0.006 24 0.14
256 0.109 192 21.0 0010 24 0.23
512 0417 384 160.0 0018 24 0.43
1024 1.400 768 10752 0.018 45 0.80
2048 16.500 480 79200 0033 45 1.50
16,384 - . . 0.085 150 12.78
131,072 . . . 0.808 150 121.21

CPU time refers to the total number of hours all CPUs employed for a
particular calculation, i.e., it is the product of the wall time and the number
of cores.
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=
o

Accuracy » MALA

IAP (EAM) -

=1
| ®

Benchmarks at DFT scales (up to 2000 atoms).

Ul

e

Compare predicted energies with a

conventional interatomic potential
(EAM potential).

Predicted energy [meV/atom]
(relative to dataset average)
|
un

2 0 > 4
DFT energy [meV/atom]
(relative to dataset average)

I
I
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Materials Learning Algorithms
Interpolation across the number of atoms

Stacking fault

<€

Introduce a stacking fault into a slab of
Beryllium (change local crystal structure
from hcp to fcc).

—e— Without stacking fault
\ —— With stacking fault

Predict the electronic structure for this
system that contains 131,072 atoms.

|
w
o
w
a1

|
w
o
~
o

—36.45

—36.50/ ~>—
103 104 10°
Number of atoms
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Outline

Outlook
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Summary and Outlook

Development goals
Scalability

Computational cost [CPUhA]

102 103 104 105
Number of atoms

=
o
w

- =
s e
Comsutational cost [GPUN]
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Conventional
DFT

—o— MALA (CPU)
—eo— MALA (GPU)
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Web user interface for deploying models —

MALA

Framework for
machine learning
materials
properties from
first-principles
data.

File-Upload

Upload atom-

positions via file!
Supported files

Uploaded:
Bel6.vasp

Upload successful

Edit
Reset

Band energy
99.77324859804682
Total energy
-582.361055941306
Fermi energy

10.248691110576647

0.26

0.258

0.256

0.254

0.252

Density of State

012345678910

X

Settings

Camera

Outline
Atoms

cell

Size

30

N o o®

Opacity
01

<>

<>
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Development goals
Scalability
Web user interface for deploying models

Graph neural networks

e SE(3) - Symmetry group of 3D rotations and
translations

e Equivariant - The vector output changes
with the same group transformation as the
input

e Graph - Works on point-clouds, is entirely
grid-free

e Attentional - Can selectively focus on
relevant pieces of information

e Neural Networks - Go fast on a GPU

Step 1: Get nearest neighbours and relative positions

Step 3: Propagate queries, keys, and values to edges
Vij = Wv (XJ - X,‘) fJ
k,‘j — WK (x]' — X,‘) fj

q; = Wof;

(' CASVUS
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- SYSTEMS UNDERSTANDING

Step 2: Get SO(3)-equivariant weight matrices

@ % 98

Clebsch- Radial Neural Spherical
Gordon Coeff. Network Harmonics
T
o eF(ll2ll) ()
N Jm J ||

o
Matrix W consists of blocks mapping between degrees

Step 4: Compute attention and aggregate
exp(q; kij)
T

aij—

~
N
N
N
Dy — . o .o
\mlt.i - § : QijVij
\

JEN:\

Fuchs et al., arXiv:2006.10503 (2020).
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Summary and Outlook

Development goals e B )
Scalability e e B
Web user interface for deploying models R '
Graph neural networks

e SE(3) - Symmetry group of 3D rotations and
translations

e Equivariant - The vector output changes
with the same group transformation as the
input

e Graph - Works on point-clouds, is entirely
grid-free

e Attentional - Can selectively focus on
relevant pieces of information

e Neural Networks - Go fast on a GPU
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Summary and Outlook

Development goals

Scalability
Web user interface for deploying models e [
Graph neural networks B i (energios, forces, .)

Atomic configuration

e SE(3) - Symmetry group of 3D rotations and
translations N
e Equivariant - The vector output changes Trj;’g‘g

with the same group transformation as the EHRipatn GNN path
input \
® Graph - Works on point-clouds, is entirely G PyTorch A
id-f Bispectrum « SE(3)-Equivariant y - states (local
gria-free descriptors (local X 4 Graph Neural GNN path Al e
e Attentional - Can selectively focus on ionic environments) Network
relevant pieces of information e

e Neural Networks - Go fast on a GPU . :>‘{ ®

ooooooooooo
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Summary and Outlook

Fourier neural operators

Development goa |S n(x) P Fourier layer 1 ———{ Fourier layer 2]—{Fourier layer 3} Q, Ve (%)
Scalability e S —
Web user interface for deploying models e
A Fourier layer ==~~~ """ "7 T TTTToToToooooos b
Graph neural networks : ( == | |
. . . . Lov(x) F R el + @ .
Physics-informed machine learning | § ] |
Inverting the KS equations i ) i
0.8 1 ' W |
Initial SC n(x) s
IntermediatesCalx}|| | ~] @ TN 0000 | s i o mimkmieis = o s = i s s ) A = o
0.6 - — Converged SC n(x) FNO Architecture
—=- Reference n(x)
X 0.41
c
0.2 1
0.0 - . : . ' . :
-15 -10 -5 0 5 10 15
5 0.002- 4/\/\/‘Al¥
L]
0.000 1 , ‘ : , , ; . : . : : . ]
-15 -10 5 0 5 10 15 0 B 2 3 4 5 6 V. Martinetto, K. Shah, A. Cangi, A. Pribram-Jones,
X iteration Mach. Learn.: Sci. Technol. 5 015050 (2024).
Forward calculation using FNO v, Norm of density through iterations
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Summary and Outlook

Development goals
Scalability
Web user interface for deploying models
Graph neural networks
Physics-informed machine learning
Machine learning electron dynamics

Iteration O

to

Xo

1 CASUS

L 4 CENTER FOR ADVANCED
- SYSTEMS UNDERSTANDING

Physics-informed neural networks

l

A A
S S SN \% .
RS N

Back-propagation

IS g2
TN

2 e, 1) = HvZ ¥ vs<r,t>} bu(r, )

n(r7 t) — Z Qb:( (I‘, t)¢z (I', t)

K. Shah, P. Stiller, N. Hoffmann, A. Cangi, NeurlPS
Workshop Machine Learning and the Physical
Sciences (2022).
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Development goals
Scalability
Web user interface for deploying models
Graph neural networks
Physics-informed machine learning
Multi-modal output

Semiconductor devices Neuromorphic computing

e

Foundation models for electronic structures >
Science goa|s Nature 601, 343 (2022).
Transferability for other parameter spaces

: L o Twisted Moiré |

Mass density, electric fields, electronic spin, heterogeneous and wisted Molré favers

complex materials

Dynamics

Machine-learning driven first-principles molecular dynamics
with access to the electronic structure

Nat. Phys. 17, 374 (2021). Nat. Rev. Phys. 3, 249 (2021).

Scalable simulations of challenging systems, such as semiconductor devices
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Thanks for your attention

Thanks to my team and collaborators!

HELMHOLTZAI

= HELMHOLTZ . .
H I DA Information & Data Science Academy Mani Lokamani, Steve Schmerler,
Peter Steinbach, Guido Juckeland
<] [ == 7
Mo
HELMHOLTZ ZENTRUM
DRESDEN ROSSENDORF
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Daniel Kotik, Jiri Vyskocil,

: Normand A. Modine, Dayton J.
Attila Cangi, Tom Jungnickel, Bartosz Brzoza Sandla Vogel, Kyle D. Miller, Aidan P
Karan Shah, Lenz Fiedler, Timothy Callow Natmnal Thom'pson Sivasanléaran

Kushal Ramakrishna, Uwe Hernandez-Acosta, Hossein Tahmasbi laboratones

Rajamanickam
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