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What we will cover today

1 — Recap and introduction

2 — Perceptron model

3 — From perceptrons to multi-layer neural networks

4 — Activation functions

5 — Universal approximation theorem

6 — Forward propagation

7 — Training neural networks: Stochastic gradient descent, gradient update, backpropagation
8 — Limitations of neural networks and regularization

9 — Key takeaways
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1 — Recap and introduction
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1 — Recap and introduction

What is machine learning?

“The use and development of computer systems that

are able to learn and adapt without following explicit

instructions, by using algorithms and statistical

models to analyse and draw inferences from patterns Machi :

in data.” achine learning model

This process often involves three main steps y — M (X)

e Input data
e Training Output Input
e Prediction

Key categories of machine learning
e Supervised Learning
e Unsupervised Learning
e Reinforcement Learning
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1 — Recap and introduction
Machine learning basics

Supervised Unsupervised  Reinforcement
Learning Learning Learning

» Core vocabulary: dataset, feature,
label, model, loss

(LR

» ML paradigms: supervised,
unsupervised, reinforcement

a;g;;;; % maremiaLs Regression Classification

—— Mmﬁ » . best-fitline. ee o : ®

» Regression vs. classification; MSE e Wy
. . . ¢ boundary

loss; linear-regression baseline 8 [,

» Model evaluation: train/val/test,

features
B

REIETN L predicted
0 label
Y

metrics, residuals X
fo(x)
» Diagnose under-/over-fit; Ridge V | // \UA
& Lasso for regularization Sk A G seie
I N ]
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1 — Recap and introduction

Biological neurons

e Neurons are the basic functional unit of the nervous system

e Neurons receive, process and transmit information through
electrical and chemical signals

e Aneuron is made up of three main parts:
o Cell body (soma)
o Dendrites
o Axon

B L
S sl e TR P
Neurons in the cerebral cortex.
https://www.pnas.org/post/journal-club/predictions-could-help-neurons-and-brain-learn

Dendritic
/ \~Dendritic branches
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1 — Recap and introduction

Biological neurons

The function of a neuron can be divided into several steps:

e Reception of signals
Dendrites receive chemical signals from neighboring neurons.
These signals lead to changes in the membrane potential of the
neuron.

e Generation of an action potential
When the membrane potential reaches a certain threshold, an
action potential is triggered. This is a rapid change in the
membrane potential that spreads along the axon.

e Transmission of the action potential
The action potential travels along the axon to the axon terminals.
This occurs through a series of depolarizations and
repolarizations of the cell membrane.

\~Dendritic branches

This variability of information transmission is reflected in the weights
of artificial neural networks.
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1 — Recap and introduction
A brief history of neural networks

1950

Statistical Methods

Mathematical model of a
neuron

Frank Rosenblatt (1958):
Perceptron

8 24.06.2025 Nanostructured Materials
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Rumelhart, Hinton,
Williams (1986):

Rediscovery of the
backpropagation algorithm
enables solving nonlinear
problems.

Backpropagation

1980

McCulloch und Pitts (1943):

Attila Cangi | a.cangi@hzdr.de

2023:
Large language models and
foundation models

2024:

Nobel Prize in Physics

Hopfield and Hinton

(artificial neural networks)

Nobel Prize in Chemistry

Baker, Hassabis, and Jumper

201 0 (protein structure and design)

Deep Learning Generative Al

2020

Krizhevsky, Sutskever,
Hinton (2012):
Convolutional neural
networks (AlexNet)

Google Brain (2017):
Transformer networks
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2 — Perceptron model

TECHNISCHE —
9 24.06.2025 Nanostructured Materials Attila Cangi | a.cangi@hzdr.de UNIVERSITAT H & i 'n gﬂuﬁ\xms
Artificial Neural Networks DRESDEN s | SYSTEMS UNDERSTANDING



2 — Perceptron model
Structure

e The simple perceptron model consists of an input layer and
an output layer

e In the input layer, the input is (x1, ) xn)

e The output layer consists of a single neuron. It contains the
network input (z) and the output value (y)

e This network can be used for binary classification, i.e. the
network can decide for an input whether it belongs to a
certain category

e The classification is expressed by the output value (y)

-----
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2 — Perceptron model
Forward propagation

e Input z1
x = , neR, z; R
Tn
e Weights wy
w = , W; €
Wn,
e Netinput e
-_ l = = - =
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2 — Perceptron model

Forward propagation

e Activation and output
o In the second and final step, we calculate the activation

of the output neuron, which also corresponds to the
output of the perceptron model

o An activation function is applied to the network input:

y =g(z+b)
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2 — Perceptron model
Learning process

In the context of the perceptron model, we understand learning as the gradual adaptation of the weights to
the desired target function with the help of training data.

Labeled Data
Training data is, for example, a series of data with a label.

The training data can therefore be written as pairs of feature vectors and labels:
(#*,9*) ke{l,...,N}

With a neural network, we must distinguish between the calculated output of the current network and the
correct output of a training example.
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2 — Perceptron model
Learning process

Learning Step

Learning means that we calculate the output for each training example and then adjust the weights. This is
called a learning step.

We can therefore adjust the weight vector for the pairs of feature vectors and labels in each learning step by
adding a change of all weights to the current value:
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2 — Perceptron model

Loss function

e In order to derive a suitable learning rule, we must first define the term loss function:
N

L(w) = % S -3
k=1

e Itis a multidimensional function of the weights or the weight vector
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2 — Perceptron model
Gradient descent

e Learning Rule: Minimum of the Loss Landscape

o We can now use the loss function to derive a learning rule by setting ourselves the goal of
minimizing the value of the loss function. This means that we look for valleys in the parameter
landscape (we did the same in the last lecture for linear regression).

TECHNISCHE
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2 — Perceptron model
Optimizing the weights: Weight update

Use the gradient of the loss landscape, which informs us about
the largest increase in the error landscape. We therefore take
the negative gradient and thus obtain our learning rule:

AW = —aVL(w)
OL(w)

Bwl

—

OL(w)

ow,,

As can be seen in the figure, updating the weights in the
direction of the negative gradient causes us to run in the
direction of the minimum of the loss landscape.
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2 — Perceptron model
Weight update demonstration

Derive the weight update for the perceptron model with a linear activation function:

Let us derive
this on the
board!
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2 — Perceptron model
XOR problem — Where the perceptron model fails

e Inability of the perceptron model to solve non-linearly separable problems

e A perceptron can only draw a straight line (or hyperplane in higher dimensions) to separate two classes

e If the data points from different classes cannot be separated by a straight line, the perceptron fails to
classify them correctly

e An illustration of this is the well-known XOR problem

e Need to go beyond the perceptron model to solve nonlinear problems!

1.0 ALD Data XOR Data QR Data
°10 0 & [6) O 101
08 08 0.8
N output o ~ Sutput
\ H output -~
30.4 Qo 204 00 504 O o
0.2‘ 0.2 02
00{ @ 0] 00{© O 00| ©
)4 X 0.0 0.2 0.4, 0.6 08 10 ¥ y y Y v v
I - I
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3 — From perceptrons to multi-layer neural networks
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3 — From perceptrons to multi-layer neural networks

Anatomy of multi-layer neural networks

e Single perceptron — linear decision only

e Insert one or more hidden layers to compose features

A
e Each hidden neuron learns an intermediate pattern;
network stacks simple pieces into complex functions Q -
(0,1) 1,1)
e Even one hidden layer and non-linear activation
dramatically increases representational power
O

(0,0)
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3 — From perceptrons to multi-layer neural networks

Structure of neural networks

e Terminology

o Multi-layer perceptron, multi-layer neural network,
feedforward neural network

e Composed of simple base units (neurons, perceptrons)
o The base units perform mathematical operations

® .
e Data flows in one direction ® |
o Input layer — hidden layers — output layer O O o
o
e Neurons apply activation functions to introduce non-linearity O O
p(z) =o(w-z+Db) s
e Output is obtained from nested evaluation of hidden layers : ® |
| | | |
Fx) = FCL AV (x))..) e o
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3 — From perceptrons to multi-layer neural networks

Structure of neural networks

e Model parameters such as weights and biases are updated
during training using (stochastic) gradient descent.

e \What about other parameters, such as layer width, the number
of layers, activation function, and learning rate?

e These are hyper-parameters and must adjusted during

training separately. ® 7
e Hyperparameter optimization is the process of identifying the @ | et
ideal model architecture and training procedures. X @
O :
@
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4 — Activation functions
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4 — Activation functions

Examples

25 24.06.2025

Stacking purely linear layers = still linear

Nanostructured Materials
Artificial Neural Networks

Attila Cangi | a.cangi@hzdr.de

UNIVERSITAT
DRESDEN

. . . . . . 10 1.0
e Activation functions introduce non-linearity to
neural networks so they can approximate 02 23
complex curves g oo 00
(o]
. . . . -0.5 -0.5 ~ —{-0.5
e Must be differentiable (at least piecewise) to - Sigmoit Wiletbeimargens
enable backpropagation gradients e o5 00 o5 1000 4 % o 3 4 °35% 35 oo 25 50
1.0 1.0 1.0
e Activation functions is an active area of research ;| - i
g" 0.0 0.0 A 0.0 -
e Rectified linear units (ReLU) is default choice  °
-0.5 -0.5 f -0.5
RelLU Leaky RelU SiLU
® Many other typeS are available —1'0—1.0 —05 Io.'ot 0.5 1.0—1'0—1.0 —05 Io.'ot 0.5 1.51'0 4 -2 | 6t 2 4
npu npu npu
e Often trial and error to find best choice
T e - I
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5 — Universal approximation theorem
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5 — Universal approximation theorem

e Informal statement of the theorem

o “A feed-forward neural network with
one hidden layer, finite number of
neurons, and a non-linear activation
can approximate any continuous
function on a closed, bounded domain,
to any desired accuracy.”

e First proved (independently) by Cybenko '89
(sigmoid) & Hornik et al. '89/'91 (broader
activations)

e Hidden layer = basis-function expansion
learned from data

e (Guarantees existence of a solution, but does

not mean that it is easy to find such a solution
B |

TECHNISCHE — o>
27 24.06.2025 Nanostructured Materials Attila Cangi | a.cangi@hzdr.de UNIVERSITAT H- &= i 'R (."’ Sﬂﬁy?
Artificial Neural Networks DRESDEN - SYSTEMS UNDERSTANDING



http://www.youtube.com/watch?v=Ln8pV1AXAgQ

6 — Forward propagation
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6 — Forward propagation
Demonstration of the forward pass

e Consider this simple neural network (Input dimension: 3, output dimension: 1, hidden layers: 2)

.'V/"’A\ .\v
L X1 )

/

2. Forward pass in vector [ matrix form

1. Hidden pre-activation (linear step)

20— Whx & b0 R

w0 N [ (WO W) )
2. Hidden activation (non-linearity) "
- W13(1)
h = <P(z(1)) c R2 I\Xz \
3. Output pre-activation Way ()
w12( )

2 =WPh + @ R Woo(!)

4. Final output
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6 — Forward propagation
Demonstration of the forward pass

e Consider this simple neural network (Input dimension: 3, output dimension: 1, hidden layers: 2)

Symbol

Input x

Target y
Hidden weights W(1)

Hidden bias b

Value
(0.6, —1.1, 0.2]T
0.3

0.7 —-04 0.1
0.05 09 -0.3

(0.2, 0.1]7

Comment

3 features

scalar regression goal

2x3

length2

Activation ¢ ReLU, ¢(z) = max(0, 2) element-wise
Output weights W2 [1.2, —0.8] 1x2
Output bias p®@ 0.05 scalar
Output act. 9 identity (regression) P(z) =2
Loss L mean-squared error, 2 (§ — y)?

I e I

30 24.06.2025
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Artificial Neural Networks
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Step

Hidden pre-act

Hidden act.

Output pre-act

Output

Loss

Let us derive
this on the
board!

Formula

/7 >N
Numeric result (shape)

20 — Wx + b _0(-)6982}
h = ¢(z(V) 0'(?8] (ReLU zeros-out second entry)
2?2 = W@h +p? 0.866
g =9(z?) 0.866
L=1(§—y)*withy = 0.3 0.160178
Wqo'”
W22(1)
W23(1)
—
(\ X3 ;}
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7 — Training neural networks
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7 — Training neural networks
Stochastic gradient descent

o Evaluate accuracy of predictions based on loss min L(z,y, W, b)

e Obijective
o Minimize loss w.r.t. weights

e Learning-rate controls step size L(z,y, W,b) =
o too large — diverge
o too small — crawl N;

1
e Batch vs. mini-batch Njii—
o Batch — full dataset each step (accurate, slow)
o Mini-batch (32-1024 samples) — trade-off speed
& noise (standard)

e Gradient update of weights (learnable parameters) oL
in terms of backpropagation 0 «— 0 —n 50
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7 — Training neural networks
Stochastic gradient descent

e Evaluate accuracy of predictions based on loss

e Obijective
o Minimize loss w.r.t. weights Convergence Divergence
i Doscending waih Siep coulichent 0 (06 Partion 37) Descovdng wih step coeScimd 095 (et 27)
e Learning-rate controls step size 0r— x -
o too large — diverge »
o too small — crawl L

.
)= " ann)

e Batch vs. mini-batch 50}
o Batch — full dataset each step (accurate, slow) @ oo
o Mini-batch (32-1024 samples) — trade-off speed ~ *——+—+—%+ 5% S T T i T s

& noise (standard)

SWpI Mt 0%

e Gradient update of weights (learnable parameters)
in terms of backpropagation

TECHNISCHE
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http://www.youtube.com/watch?v=2gbgLNK1WQ0

7 — Training neural networks
Gradient update

e Recall forward propagation
z) = Wlx + p® (e R?)

h = go(z(l)) (€ R?)
2D =W»h+p@  (ecR)
g =y(=?) (ER)
Wy @
e Recall gradient update formula
OL
0 «— 0 — n—
BL. o

Layer 2 (output)

parameter gradient update equation
W ¢ glx2 OL o)y WO « WO _ @y
OW(?)
oL
(2) i ¢) (2) (2) _ 52
b® e R 5@ ~ 0 b+ b¥ —nd
T e N
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7 — Training neural networks
Backpropagation

e Let’s first consider the output layer:

oL oL oL
_ s (2 _ _
owe — O R o7 = 5.0~ 95

‘r i 0 ¢(a?)

e Erroris propagated backward from output to earlier layers

(=) = Ljy/(=")

e The hidden layer yields:

OL
OW 1)

Wy

OL

_ sy aT 1) _ _
= §'"'x ) = 5,0
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7 — Training neural networks

Workflow overview

e Training a neural network consists of
o Forward propagation — Compute loss
o Backpropagation — Gradients
o Gradient descent — Weight update

w;;@
e Forward pass builds a computational graph (stores
activations) O
e Backward pass re-uses those activations to compute Wi,

gradients once per weight

e Dramatically faster than finite-difference

e Implemented automatic differentiation in libraries
(such as PyTorch autograd) N~

>
I I

TECHNISCHE — =
36 24062025  Nanostructured Materials Attla Cangi | a.cangi@hzdr.de UNIVERSITAT g 2 1)) 0 ‘ Et’ CASVUS
- SYSTEMS UNDERSTANDING

Artificial Neural Networks DRESDEN



8 — Limitations of neural networks and regularization
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8 — Limitations of neural networks and regularization

Common challenges for feedforward neural networks

e Data
o Often need vast amounts of data for training

e Computational costs
o Training and running neural networks requires substantial computational
resources (many GPUs needed)

e Overfitting and generalization
o Neural networks can memorize the training data instead of learning the
underlying patterns (— Regularization can help!)

e Hyperparameter optimization
o Finding the right hyperparameters can be time-consuming and challenging

e Interpretability and explainability
o Considered as “black boxes”
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8 — Limitations of neural networks and regularization

Learning curve

e Underfitting (bias)

o Error due to overly simplistic assumptions in the learning

algorithm.

Underfittin Overfittin
o Model cannot capture the underlying pattern. It's not 9 9

complex enough for the task.

o Example: A shallow neural network trying to model a
highly nonlinear function.

e Overfitting (variance) Loss
o Error due to the model's sensitivity to small fluctuations
in the training set. A model with high variance learns the
noise in the training data and fails to generalize well.

i. Low training error. training

ii. High validation error, and there's a large gap
between training and validation loss.

o Model is too complex relative to the amount of training early stopping \)
data or regularization.
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8 — Limitations of neural networks and regularization
Model capacity spectrum

Regression
X
X
[0} [} @
= B R
| - p . —
oo oo o . gm .
Classification
§ x \
Size Size Size
90+91X 90+91X +92X2 90+91X +62X2 "93x3"”94x4
High Bias Low Bias, Low Variance High Variance ’ ’
(Underfitting) (Goodfitting) (Overfitting) faYal l(i::::ngtet::g Appropirate-fitting ((f?::‘r,cil;;tftiit\tgi-r»‘t%o
explain the variance) good to be true) HG
I . rE |
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8 — Limitations of neural networks and regularization
Regularization methods

e L1 reqgularization (LASSO: Least Absolute Shrinkage and Selection Operator)
o Lasso encourages sparsity by bringing some coefficients to exactly zero.
o Can set some weights exactly zero = implicit feature selection.

1 N N
L= Nzi:(ﬁi — ;) +)‘zi:|9i|

e L2 reqgularization
o Shrinks all weights smoothly toward zero (also known as weight decay).
o Encourages the model to have smaller and more balanced weights.

1 N N
_ A \2 2
L= Nzi:(yz Yi) ‘|‘)\;0i
e Elastic net regularization
1 N N N
= T )2 _ 2
L=y 20— ) $ AN 0
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9 — Key takeaways
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9 — Key takeaways

e Overview of neural networks

e Perceptron model

e Multi-layer perceptrons / feedforward neural W ==
networks

e Activation functions

e Universal approximation theorem

e Training neural networks
o Forward and backpropagation
o Stochastic gradient descent

e Regularization
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Selected resources for further study

e Some popular online resources about the basics of machine learning
and neural networks

o Deep Learning Book

m https://www.deeplearningbook.org
o Neural Networks and Deep Learning

m http://neuralnetworksanddeeplearning.com/
o Dive into Deep Learning

m https://d2l.ai/

e Domain-specific resources

o Deep Learning for Molecules and Materials
m https://dmol.pub

o Machine Learning for Materials
m https://aronwalsh.github.io/MLforMaterials
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